// SPDX-License-Identifier: GPL-2.0-only /* * Stand-alone page-table allocator for hyp stage-1 and guest stage-2. * No bombay mix was harmed in the writing of this file. * * Copyright (C) 2020 Google LLC * Author: Will Deacon */ #include #include #include #define KVM_PTE_TYPE BIT(1) #define KVM_PTE_TYPE_BLOCK 0 #define KVM_PTE_TYPE_PAGE 1 #define KVM_PTE_TYPE_TABLE 1 #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2) #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2) #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6) #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1 #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8) #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3 #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10) #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2) #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6) #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7) #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8) #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3 #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10) #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51) #define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55) #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54) #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54) #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \ KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \ KVM_PTE_LEAF_ATTR_HI_S2_XN) #define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2) #define KVM_MAX_OWNER_ID 1 /* * Used to indicate a pte for which a 'break-before-make' sequence is in * progress. */ #define KVM_INVALID_PTE_LOCKED BIT(10) struct kvm_pgtable_walk_data { struct kvm_pgtable_walker *walker; const u64 start; u64 addr; const u64 end; }; static bool kvm_phys_is_valid(u64 phys) { return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX)); } static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys) { u64 granule = kvm_granule_size(ctx->level); if (!kvm_level_supports_block_mapping(ctx->level)) return false; if (granule > (ctx->end - ctx->addr)) return false; if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule)) return false; return IS_ALIGNED(ctx->addr, granule); } static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level) { u64 shift = kvm_granule_shift(level); u64 mask = BIT(PAGE_SHIFT - 3) - 1; return (data->addr >> shift) & mask; } static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr) { u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */ u64 mask = BIT(pgt->ia_bits) - 1; return (addr & mask) >> shift; } static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level) { struct kvm_pgtable pgt = { .ia_bits = ia_bits, .start_level = start_level, }; return kvm_pgd_page_idx(&pgt, -1ULL) + 1; } static bool kvm_pte_table(kvm_pte_t pte, u32 level) { if (level == KVM_PGTABLE_MAX_LEVELS - 1) return false; if (!kvm_pte_valid(pte)) return false; return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE; } static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops) { return mm_ops->phys_to_virt(kvm_pte_to_phys(pte)); } static void kvm_clear_pte(kvm_pte_t *ptep) { WRITE_ONCE(*ptep, 0); } static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops) { kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp)); pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE); pte |= KVM_PTE_VALID; return pte; } static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level) { kvm_pte_t pte = kvm_phys_to_pte(pa); u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE : KVM_PTE_TYPE_BLOCK; pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI); pte |= FIELD_PREP(KVM_PTE_TYPE, type); pte |= KVM_PTE_VALID; return pte; } static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id) { return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id); } static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { struct kvm_pgtable_walker *walker = data->walker; /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */ WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held()); return walker->cb(ctx, visit); } static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker, int r) { /* * Visitor callbacks return EAGAIN when the conditions that led to a * fault are no longer reflected in the page tables due to a race to * update a PTE. In the context of a fault handler this is interpreted * as a signal to retry guest execution. * * Ignore the return code altogether for walkers outside a fault handler * (e.g. write protecting a range of memory) and chug along with the * page table walk. */ if (r == -EAGAIN) return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT); return !r; } static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level); static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pteref, u32 level) { enum kvm_pgtable_walk_flags flags = data->walker->flags; kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref); struct kvm_pgtable_visit_ctx ctx = { .ptep = ptep, .old = READ_ONCE(*ptep), .arg = data->walker->arg, .mm_ops = mm_ops, .start = data->start, .addr = data->addr, .end = data->end, .level = level, .flags = flags, }; int ret = 0; kvm_pteref_t childp; bool table = kvm_pte_table(ctx.old, level); if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE); if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) { ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF); ctx.old = READ_ONCE(*ptep); table = kvm_pte_table(ctx.old, level); } if (!kvm_pgtable_walk_continue(data->walker, ret)) goto out; if (!table) { data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level)); data->addr += kvm_granule_size(level); goto out; } childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops); ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1); if (!kvm_pgtable_walk_continue(data->walker, ret)) goto out; if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST) ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST); out: if (kvm_pgtable_walk_continue(data->walker, ret)) return 0; return ret; } static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level) { u32 idx; int ret = 0; if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS)) return -EINVAL; for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) { kvm_pteref_t pteref = &pgtable[idx]; if (data->addr >= data->end) break; ret = __kvm_pgtable_visit(data, mm_ops, pteref, level); if (ret) break; } return ret; } static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data) { u32 idx; int ret = 0; u64 limit = BIT(pgt->ia_bits); if (data->addr > limit || data->end > limit) return -ERANGE; if (!pgt->pgd) return -EINVAL; for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) { kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE]; ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level); if (ret) break; } return ret; } int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, struct kvm_pgtable_walker *walker) { struct kvm_pgtable_walk_data walk_data = { .start = ALIGN_DOWN(addr, PAGE_SIZE), .addr = ALIGN_DOWN(addr, PAGE_SIZE), .end = PAGE_ALIGN(walk_data.addr + size), .walker = walker, }; int r; r = kvm_pgtable_walk_begin(walker); if (r) return r; r = _kvm_pgtable_walk(pgt, &walk_data); kvm_pgtable_walk_end(walker); return r; } struct leaf_walk_data { kvm_pte_t pte; u32 level; }; static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { struct leaf_walk_data *data = ctx->arg; data->pte = ctx->old; data->level = ctx->level; return 0; } int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr, kvm_pte_t *ptep, u32 *level) { struct leaf_walk_data data; struct kvm_pgtable_walker walker = { .cb = leaf_walker, .flags = KVM_PGTABLE_WALK_LEAF, .arg = &data, }; int ret; ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE), PAGE_SIZE, &walker); if (!ret) { if (ptep) *ptep = data.pte; if (level) *level = data.level; } return ret; } struct hyp_map_data { const u64 phys; kvm_pte_t attr; }; static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep) { bool device = prot & KVM_PGTABLE_PROT_DEVICE; u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL; kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype); u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS; u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW : KVM_PTE_LEAF_ATTR_LO_S1_AP_RO; if (!(prot & KVM_PGTABLE_PROT_R)) return -EINVAL; if (prot & KVM_PGTABLE_PROT_X) { if (prot & KVM_PGTABLE_PROT_W) return -EINVAL; if (device) return -EINVAL; } else { attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; } attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap); attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh); attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF; attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; *ptep = attr; return 0; } enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte) { enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; u32 ap; if (!kvm_pte_valid(pte)) return prot; if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN)) prot |= KVM_PGTABLE_PROT_X; ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte); if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO) prot |= KVM_PGTABLE_PROT_R; else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW) prot |= KVM_PGTABLE_PROT_RW; return prot; } static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, struct hyp_map_data *data) { u64 phys = data->phys + (ctx->addr - ctx->start); kvm_pte_t new; if (!kvm_block_mapping_supported(ctx, phys)) return false; new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level); if (ctx->old == new) return true; if (!kvm_pte_valid(ctx->old)) ctx->mm_ops->get_page(ctx->ptep); else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) return false; smp_store_release(ctx->ptep, new); return true; } static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { kvm_pte_t *childp, new; struct hyp_map_data *data = ctx->arg; struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; if (hyp_map_walker_try_leaf(ctx, data)) return 0; if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1)) return -EINVAL; childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL); if (!childp) return -ENOMEM; new = kvm_init_table_pte(childp, mm_ops); mm_ops->get_page(ctx->ptep); smp_store_release(ctx->ptep, new); return 0; } int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, enum kvm_pgtable_prot prot) { int ret; struct hyp_map_data map_data = { .phys = ALIGN_DOWN(phys, PAGE_SIZE), }; struct kvm_pgtable_walker walker = { .cb = hyp_map_walker, .flags = KVM_PGTABLE_WALK_LEAF, .arg = &map_data, }; ret = hyp_set_prot_attr(prot, &map_data.attr); if (ret) return ret; ret = kvm_pgtable_walk(pgt, addr, size, &walker); dsb(ishst); isb(); return ret; } static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { kvm_pte_t *childp = NULL; u64 granule = kvm_granule_size(ctx->level); u64 *unmapped = ctx->arg; struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; if (!kvm_pte_valid(ctx->old)) return -EINVAL; if (kvm_pte_table(ctx->old, ctx->level)) { childp = kvm_pte_follow(ctx->old, mm_ops); if (mm_ops->page_count(childp) != 1) return 0; kvm_clear_pte(ctx->ptep); dsb(ishst); __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level); } else { if (ctx->end - ctx->addr < granule) return -EINVAL; kvm_clear_pte(ctx->ptep); dsb(ishst); __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level); *unmapped += granule; } dsb(ish); isb(); mm_ops->put_page(ctx->ptep); if (childp) mm_ops->put_page(childp); return 0; } u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) { u64 unmapped = 0; struct kvm_pgtable_walker walker = { .cb = hyp_unmap_walker, .arg = &unmapped, .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, }; if (!pgt->mm_ops->page_count) return 0; kvm_pgtable_walk(pgt, addr, size, &walker); return unmapped; } int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits, struct kvm_pgtable_mm_ops *mm_ops) { u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits); pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL); if (!pgt->pgd) return -ENOMEM; pgt->ia_bits = va_bits; pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels; pgt->mm_ops = mm_ops; pgt->mmu = NULL; pgt->force_pte_cb = NULL; return 0; } static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; if (!kvm_pte_valid(ctx->old)) return 0; mm_ops->put_page(ctx->ptep); if (kvm_pte_table(ctx->old, ctx->level)) mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops)); return 0; } void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) { struct kvm_pgtable_walker walker = { .cb = hyp_free_walker, .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, }; WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd)); pgt->pgd = NULL; } struct stage2_map_data { const u64 phys; kvm_pte_t attr; u8 owner_id; kvm_pte_t *anchor; kvm_pte_t *childp; struct kvm_s2_mmu *mmu; void *memcache; /* Force mappings to page granularity */ bool force_pte; }; u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift) { u64 vtcr = VTCR_EL2_FLAGS; u8 lvls; vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT; vtcr |= VTCR_EL2_T0SZ(phys_shift); /* * Use a minimum 2 level page table to prevent splitting * host PMD huge pages at stage2. */ lvls = stage2_pgtable_levels(phys_shift); if (lvls < 2) lvls = 2; vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls); #ifdef CONFIG_ARM64_HW_AFDBM /* * Enable the Hardware Access Flag management, unconditionally * on all CPUs. In systems that have asymmetric support for the feature * this allows KVM to leverage hardware support on the subset of cores * that implement the feature. * * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by * hardware) on implementations that do not advertise support for the * feature. As such, setting HA unconditionally is safe, unless you * happen to be running on a design that has unadvertised support for * HAFDBS. Here be dragons. */ if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) vtcr |= VTCR_EL2_HA; #endif /* CONFIG_ARM64_HW_AFDBM */ /* Set the vmid bits */ vtcr |= (get_vmid_bits(mmfr1) == 16) ? VTCR_EL2_VS_16BIT : VTCR_EL2_VS_8BIT; return vtcr; } static bool stage2_has_fwb(struct kvm_pgtable *pgt) { if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) return false; return !(pgt->flags & KVM_PGTABLE_S2_NOFWB); } #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt)) static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot, kvm_pte_t *ptep) { bool device = prot & KVM_PGTABLE_PROT_DEVICE; kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) : KVM_S2_MEMATTR(pgt, NORMAL); u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; if (!(prot & KVM_PGTABLE_PROT_X)) attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; else if (device) return -EINVAL; if (prot & KVM_PGTABLE_PROT_R) attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; if (prot & KVM_PGTABLE_PROT_W) attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; *ptep = attr; return 0; } enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte) { enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; if (!kvm_pte_valid(pte)) return prot; if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R) prot |= KVM_PGTABLE_PROT_R; if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W) prot |= KVM_PGTABLE_PROT_W; if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN)) prot |= KVM_PGTABLE_PROT_X; return prot; } static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new) { if (!kvm_pte_valid(old) || !kvm_pte_valid(new)) return true; return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS)); } static bool stage2_pte_is_counted(kvm_pte_t pte) { /* * The refcount tracks valid entries as well as invalid entries if they * encode ownership of a page to another entity than the page-table * owner, whose id is 0. */ return !!pte; } static bool stage2_pte_is_locked(kvm_pte_t pte) { return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED); } static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new) { if (!kvm_pgtable_walk_shared(ctx)) { WRITE_ONCE(*ctx->ptep, new); return true; } return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old; } /** * stage2_try_break_pte() - Invalidates a pte according to the * 'break-before-make' requirements of the * architecture. * * @ctx: context of the visited pte. * @mmu: stage-2 mmu * * Returns: true if the pte was successfully broken. * * If the removed pte was valid, performs the necessary serialization and TLB * invalidation for the old value. For counted ptes, drops the reference count * on the containing table page. */ static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx, struct kvm_s2_mmu *mmu) { struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; if (stage2_pte_is_locked(ctx->old)) { /* * Should never occur if this walker has exclusive access to the * page tables. */ WARN_ON(!kvm_pgtable_walk_shared(ctx)); return false; } if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED)) return false; /* * Perform the appropriate TLB invalidation based on the evicted pte * value (if any). */ if (kvm_pte_table(ctx->old, ctx->level)) kvm_call_hyp(__kvm_tlb_flush_vmid, mmu); else if (kvm_pte_valid(ctx->old)) kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, ctx->level); if (stage2_pte_is_counted(ctx->old)) mm_ops->put_page(ctx->ptep); return true; } static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new) { struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; WARN_ON(!stage2_pte_is_locked(*ctx->ptep)); if (stage2_pte_is_counted(new)) mm_ops->get_page(ctx->ptep); smp_store_release(ctx->ptep, new); } static void stage2_put_pte(const struct kvm_pgtable_visit_ctx *ctx, struct kvm_s2_mmu *mmu, struct kvm_pgtable_mm_ops *mm_ops) { /* * Clear the existing PTE, and perform break-before-make with * TLB maintenance if it was valid. */ if (kvm_pte_valid(ctx->old)) { kvm_clear_pte(ctx->ptep); kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, ctx->level); } mm_ops->put_page(ctx->ptep); } static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte) { u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR; return memattr == KVM_S2_MEMATTR(pgt, NORMAL); } static bool stage2_pte_executable(kvm_pte_t pte) { return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN); } static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx, const struct stage2_map_data *data) { u64 phys = data->phys; /* * Stage-2 walks to update ownership data are communicated to the map * walker using an invalid PA. Avoid offsetting an already invalid PA, * which could overflow and make the address valid again. */ if (!kvm_phys_is_valid(phys)) return phys; /* * Otherwise, work out the correct PA based on how far the walk has * gotten. */ return phys + (ctx->addr - ctx->start); } static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx, struct stage2_map_data *data) { u64 phys = stage2_map_walker_phys_addr(ctx, data); if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1))) return false; return kvm_block_mapping_supported(ctx, phys); } static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, struct stage2_map_data *data) { kvm_pte_t new; u64 phys = stage2_map_walker_phys_addr(ctx, data); u64 granule = kvm_granule_size(ctx->level); struct kvm_pgtable *pgt = data->mmu->pgt; struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; if (!stage2_leaf_mapping_allowed(ctx, data)) return -E2BIG; if (kvm_phys_is_valid(phys)) new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level); else new = kvm_init_invalid_leaf_owner(data->owner_id); /* * Skip updating the PTE if we are trying to recreate the exact * same mapping or only change the access permissions. Instead, * the vCPU will exit one more time from guest if still needed * and then go through the path of relaxing permissions. */ if (!stage2_pte_needs_update(ctx->old, new)) return -EAGAIN; if (!stage2_try_break_pte(ctx, data->mmu)) return -EAGAIN; /* Perform CMOs before installation of the guest stage-2 PTE */ if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new)) mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops), granule); if (mm_ops->icache_inval_pou && stage2_pte_executable(new)) mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule); stage2_make_pte(ctx, new); return 0; } static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx, struct stage2_map_data *data) { struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops); int ret; if (!stage2_leaf_mapping_allowed(ctx, data)) return 0; ret = stage2_map_walker_try_leaf(ctx, data); if (ret) return ret; mm_ops->free_removed_table(childp, ctx->level); return 0; } static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx, struct stage2_map_data *data) { struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; kvm_pte_t *childp, new; int ret; ret = stage2_map_walker_try_leaf(ctx, data); if (ret != -E2BIG) return ret; if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1)) return -EINVAL; if (!data->memcache) return -ENOMEM; childp = mm_ops->zalloc_page(data->memcache); if (!childp) return -ENOMEM; if (!stage2_try_break_pte(ctx, data->mmu)) { mm_ops->put_page(childp); return -EAGAIN; } /* * If we've run into an existing block mapping then replace it with * a table. Accesses beyond 'end' that fall within the new table * will be mapped lazily. */ new = kvm_init_table_pte(childp, mm_ops); stage2_make_pte(ctx, new); return 0; } /* * The TABLE_PRE callback runs for table entries on the way down, looking * for table entries which we could conceivably replace with a block entry * for this mapping. If it finds one it replaces the entry and calls * kvm_pgtable_mm_ops::free_removed_table() to tear down the detached table. * * Otherwise, the LEAF callback performs the mapping at the existing leaves * instead. */ static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { struct stage2_map_data *data = ctx->arg; switch (visit) { case KVM_PGTABLE_WALK_TABLE_PRE: return stage2_map_walk_table_pre(ctx, data); case KVM_PGTABLE_WALK_LEAF: return stage2_map_walk_leaf(ctx, data); default: return -EINVAL; } } int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, enum kvm_pgtable_prot prot, void *mc, enum kvm_pgtable_walk_flags flags) { int ret; struct stage2_map_data map_data = { .phys = ALIGN_DOWN(phys, PAGE_SIZE), .mmu = pgt->mmu, .memcache = mc, .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot), }; struct kvm_pgtable_walker walker = { .cb = stage2_map_walker, .flags = flags | KVM_PGTABLE_WALK_TABLE_PRE | KVM_PGTABLE_WALK_LEAF, .arg = &map_data, }; if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys))) return -EINVAL; ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); if (ret) return ret; ret = kvm_pgtable_walk(pgt, addr, size, &walker); dsb(ishst); return ret; } int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size, void *mc, u8 owner_id) { int ret; struct stage2_map_data map_data = { .phys = KVM_PHYS_INVALID, .mmu = pgt->mmu, .memcache = mc, .owner_id = owner_id, .force_pte = true, }; struct kvm_pgtable_walker walker = { .cb = stage2_map_walker, .flags = KVM_PGTABLE_WALK_TABLE_PRE | KVM_PGTABLE_WALK_LEAF, .arg = &map_data, }; if (owner_id > KVM_MAX_OWNER_ID) return -EINVAL; ret = kvm_pgtable_walk(pgt, addr, size, &walker); return ret; } static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { struct kvm_pgtable *pgt = ctx->arg; struct kvm_s2_mmu *mmu = pgt->mmu; struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; kvm_pte_t *childp = NULL; bool need_flush = false; if (!kvm_pte_valid(ctx->old)) { if (stage2_pte_is_counted(ctx->old)) { kvm_clear_pte(ctx->ptep); mm_ops->put_page(ctx->ptep); } return 0; } if (kvm_pte_table(ctx->old, ctx->level)) { childp = kvm_pte_follow(ctx->old, mm_ops); if (mm_ops->page_count(childp) != 1) return 0; } else if (stage2_pte_cacheable(pgt, ctx->old)) { need_flush = !stage2_has_fwb(pgt); } /* * This is similar to the map() path in that we unmap the entire * block entry and rely on the remaining portions being faulted * back lazily. */ stage2_put_pte(ctx, mmu, mm_ops); if (need_flush && mm_ops->dcache_clean_inval_poc) mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops), kvm_granule_size(ctx->level)); if (childp) mm_ops->put_page(childp); return 0; } int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) { struct kvm_pgtable_walker walker = { .cb = stage2_unmap_walker, .arg = pgt, .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, }; return kvm_pgtable_walk(pgt, addr, size, &walker); } struct stage2_attr_data { kvm_pte_t attr_set; kvm_pte_t attr_clr; kvm_pte_t pte; u32 level; }; static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { kvm_pte_t pte = ctx->old; struct stage2_attr_data *data = ctx->arg; struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; if (!kvm_pte_valid(ctx->old)) return -EAGAIN; data->level = ctx->level; data->pte = pte; pte &= ~data->attr_clr; pte |= data->attr_set; /* * We may race with the CPU trying to set the access flag here, * but worst-case the access flag update gets lost and will be * set on the next access instead. */ if (data->pte != pte) { /* * Invalidate instruction cache before updating the guest * stage-2 PTE if we are going to add executable permission. */ if (mm_ops->icache_inval_pou && stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old)) mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops), kvm_granule_size(ctx->level)); if (!stage2_try_set_pte(ctx, pte)) return -EAGAIN; } return 0; } static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr, u64 size, kvm_pte_t attr_set, kvm_pte_t attr_clr, kvm_pte_t *orig_pte, u32 *level, enum kvm_pgtable_walk_flags flags) { int ret; kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI; struct stage2_attr_data data = { .attr_set = attr_set & attr_mask, .attr_clr = attr_clr & attr_mask, }; struct kvm_pgtable_walker walker = { .cb = stage2_attr_walker, .arg = &data, .flags = flags | KVM_PGTABLE_WALK_LEAF, }; ret = kvm_pgtable_walk(pgt, addr, size, &walker); if (ret) return ret; if (orig_pte) *orig_pte = data.pte; if (level) *level = data.level; return 0; } int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size) { return stage2_update_leaf_attrs(pgt, addr, size, 0, KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W, NULL, NULL, 0); } kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr) { kvm_pte_t pte = 0; int ret; ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0, &pte, NULL, KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED); if (!ret) dsb(ishst); return pte; } kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr) { kvm_pte_t pte = 0; stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF, &pte, NULL, 0); /* * "But where's the TLBI?!", you scream. * "Over in the core code", I sigh. * * See the '->clear_flush_young()' callback on the KVM mmu notifier. */ return pte; } bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr) { kvm_pte_t pte = 0; stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL, 0); return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF; } int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, enum kvm_pgtable_prot prot) { int ret; u32 level; kvm_pte_t set = 0, clr = 0; if (prot & KVM_PTE_LEAF_ATTR_HI_SW) return -EINVAL; if (prot & KVM_PGTABLE_PROT_R) set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; if (prot & KVM_PGTABLE_PROT_W) set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; if (prot & KVM_PGTABLE_PROT_X) clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level, KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED); if (!ret) kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level); return ret; } static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { struct kvm_pgtable *pgt = ctx->arg; struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old)) return 0; if (mm_ops->dcache_clean_inval_poc) mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops), kvm_granule_size(ctx->level)); return 0; } int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) { struct kvm_pgtable_walker walker = { .cb = stage2_flush_walker, .flags = KVM_PGTABLE_WALK_LEAF, .arg = pgt, }; if (stage2_has_fwb(pgt)) return 0; return kvm_pgtable_walk(pgt, addr, size, &walker); } int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu, struct kvm_pgtable_mm_ops *mm_ops, enum kvm_pgtable_stage2_flags flags, kvm_pgtable_force_pte_cb_t force_pte_cb) { size_t pgd_sz; u64 vtcr = mmu->arch->vtcr; u32 ia_bits = VTCR_EL2_IPA(vtcr); u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz); if (!pgt->pgd) return -ENOMEM; pgt->ia_bits = ia_bits; pgt->start_level = start_level; pgt->mm_ops = mm_ops; pgt->mmu = mmu; pgt->flags = flags; pgt->force_pte_cb = force_pte_cb; /* Ensure zeroed PGD pages are visible to the hardware walker */ dsb(ishst); return 0; } size_t kvm_pgtable_stage2_pgd_size(u64 vtcr) { u32 ia_bits = VTCR_EL2_IPA(vtcr); u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; } static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; if (!stage2_pte_is_counted(ctx->old)) return 0; mm_ops->put_page(ctx->ptep); if (kvm_pte_table(ctx->old, ctx->level)) mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops)); return 0; } void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) { size_t pgd_sz; struct kvm_pgtable_walker walker = { .cb = stage2_free_walker, .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, }; WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE; pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz); pgt->pgd = NULL; } void kvm_pgtable_stage2_free_removed(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level) { kvm_pteref_t ptep = (kvm_pteref_t)pgtable; struct kvm_pgtable_walker walker = { .cb = stage2_free_walker, .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, }; struct kvm_pgtable_walk_data data = { .walker = &walker, /* * At this point the IPA really doesn't matter, as the page * table being traversed has already been removed from the stage * 2. Set an appropriate range to cover the entire page table. */ .addr = 0, .end = kvm_granule_size(level), }; WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1)); }