/* SPDX-License-Identifier: GPL-2.0-only */ /* * Low-level CPU initialisation * Based on arch/arm/kernel/head.S * * Copyright (C) 1994-2002 Russell King * Copyright (C) 2003-2012 ARM Ltd. * Authors: Catalin Marinas * Will Deacon */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "efi-header.S" #if (PAGE_OFFSET & 0x1fffff) != 0 #error PAGE_OFFSET must be at least 2MB aligned #endif /* * Kernel startup entry point. * --------------------------- * * The requirements are: * MMU = off, D-cache = off, I-cache = on or off, * x0 = physical address to the FDT blob. * * Note that the callee-saved registers are used for storing variables * that are useful before the MMU is enabled. The allocations are described * in the entry routines. */ __HEAD /* * DO NOT MODIFY. Image header expected by Linux boot-loaders. */ efi_signature_nop // special NOP to identity as PE/COFF executable b primary_entry // branch to kernel start, magic .quad 0 // Image load offset from start of RAM, little-endian le64sym _kernel_size_le // Effective size of kernel image, little-endian le64sym _kernel_flags_le // Informative flags, little-endian .quad 0 // reserved .quad 0 // reserved .quad 0 // reserved .ascii ARM64_IMAGE_MAGIC // Magic number .long .Lpe_header_offset // Offset to the PE header. __EFI_PE_HEADER .section ".idmap.text","a" /* * The following callee saved general purpose registers are used on the * primary lowlevel boot path: * * Register Scope Purpose * x19 primary_entry() .. start_kernel() whether we entered with the MMU on * x20 primary_entry() .. __primary_switch() CPU boot mode * x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0 * x22 create_idmap() .. start_kernel() ID map VA of the DT blob * x23 primary_entry() .. start_kernel() physical misalignment/KASLR offset * x24 __primary_switch() linear map KASLR seed * x25 primary_entry() .. start_kernel() supported VA size * x28 create_idmap() callee preserved temp register */ SYM_CODE_START(primary_entry) bl record_mmu_state bl preserve_boot_args bl create_idmap /* * If we entered with the MMU and caches on, clean the ID mapped part * of the primary boot code to the PoC so we can safely execute it with * the MMU off. */ cbz x19, 0f adrp x0, __idmap_text_start adr_l x1, __idmap_text_end adr_l x2, dcache_clean_poc blr x2 0: mov x0, x19 bl init_kernel_el // w0=cpu_boot_mode mov x20, x0 /* * The following calls CPU setup code, see arch/arm64/mm/proc.S for * details. * On return, the CPU will be ready for the MMU to be turned on and * the TCR will have been set. */ #if VA_BITS > 48 mrs_s x0, SYS_ID_AA64MMFR2_EL1 tst x0, ID_AA64MMFR2_EL1_VARange_MASK mov x0, #VA_BITS mov x25, #VA_BITS_MIN csel x25, x25, x0, eq mov x0, x25 #endif bl __cpu_setup // initialise processor b __primary_switch SYM_CODE_END(primary_entry) __INIT SYM_CODE_START_LOCAL(record_mmu_state) mrs x19, CurrentEL cmp x19, #CurrentEL_EL2 mrs x19, sctlr_el1 b.ne 0f mrs x19, sctlr_el2 0: CPU_LE( tbnz x19, #SCTLR_ELx_EE_SHIFT, 1f ) CPU_BE( tbz x19, #SCTLR_ELx_EE_SHIFT, 1f ) tst x19, #SCTLR_ELx_C // Z := (C == 0) and x19, x19, #SCTLR_ELx_M // isolate M bit csel x19, xzr, x19, eq // clear x19 if Z ret /* * Set the correct endianness early so all memory accesses issued * before init_kernel_el() occur in the correct byte order. Note that * this means the MMU must be disabled, or the active ID map will end * up getting interpreted with the wrong byte order. */ 1: eor x19, x19, #SCTLR_ELx_EE bic x19, x19, #SCTLR_ELx_M b.ne 2f pre_disable_mmu_workaround msr sctlr_el2, x19 b 3f 2: pre_disable_mmu_workaround msr sctlr_el1, x19 3: isb mov x19, xzr ret SYM_CODE_END(record_mmu_state) /* * Preserve the arguments passed by the bootloader in x0 .. x3 */ SYM_CODE_START_LOCAL(preserve_boot_args) mov x21, x0 // x21=FDT adr_l x0, boot_args // record the contents of stp x21, x1, [x0] // x0 .. x3 at kernel entry stp x2, x3, [x0, #16] cbnz x19, 0f // skip cache invalidation if MMU is on dmb sy // needed before dc ivac with // MMU off add x1, x0, #0x20 // 4 x 8 bytes b dcache_inval_poc // tail call 0: str_l x19, mmu_enabled_at_boot, x0 ret SYM_CODE_END(preserve_boot_args) SYM_FUNC_START_LOCAL(clear_page_tables) /* * Clear the init page tables. */ adrp x0, init_pg_dir adrp x1, init_pg_end sub x2, x1, x0 mov x1, xzr b __pi_memset // tail call SYM_FUNC_END(clear_page_tables) /* * Macro to populate page table entries, these entries can be pointers to the next level * or last level entries pointing to physical memory. * * tbl: page table address * rtbl: pointer to page table or physical memory * index: start index to write * eindex: end index to write - [index, eindex] written to * flags: flags for pagetable entry to or in * inc: increment to rtbl between each entry * tmp1: temporary variable * * Preserves: tbl, eindex, flags, inc * Corrupts: index, tmp1 * Returns: rtbl */ .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1 .Lpe\@: phys_to_pte \tmp1, \rtbl orr \tmp1, \tmp1, \flags // tmp1 = table entry str \tmp1, [\tbl, \index, lsl #3] add \rtbl, \rtbl, \inc // rtbl = pa next level add \index, \index, #1 cmp \index, \eindex b.ls .Lpe\@ .endm /* * Compute indices of table entries from virtual address range. If multiple entries * were needed in the previous page table level then the next page table level is assumed * to be composed of multiple pages. (This effectively scales the end index). * * vstart: virtual address of start of range * vend: virtual address of end of range - we map [vstart, vend] * shift: shift used to transform virtual address into index * order: #imm 2log(number of entries in page table) * istart: index in table corresponding to vstart * iend: index in table corresponding to vend * count: On entry: how many extra entries were required in previous level, scales * our end index. * On exit: returns how many extra entries required for next page table level * * Preserves: vstart, vend * Returns: istart, iend, count */ .macro compute_indices, vstart, vend, shift, order, istart, iend, count ubfx \istart, \vstart, \shift, \order ubfx \iend, \vend, \shift, \order add \iend, \iend, \count, lsl \order sub \count, \iend, \istart .endm /* * Map memory for specified virtual address range. Each level of page table needed supports * multiple entries. If a level requires n entries the next page table level is assumed to be * formed from n pages. * * tbl: location of page table * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE) * vstart: virtual address of start of range * vend: virtual address of end of range - we map [vstart, vend - 1] * flags: flags to use to map last level entries * phys: physical address corresponding to vstart - physical memory is contiguous * order: #imm 2log(number of entries in PGD table) * * If extra_shift is set, an extra level will be populated if the end address does * not fit in 'extra_shift' bits. This assumes vend is in the TTBR0 range. * * Temporaries: istart, iend, tmp, count, sv - these need to be different registers * Preserves: vstart, flags * Corrupts: tbl, rtbl, vend, istart, iend, tmp, count, sv */ .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, order, istart, iend, tmp, count, sv, extra_shift sub \vend, \vend, #1 add \rtbl, \tbl, #PAGE_SIZE mov \count, #0 .ifnb \extra_shift tst \vend, #~((1 << (\extra_shift)) - 1) b.eq .L_\@ compute_indices \vstart, \vend, #\extra_shift, #(PAGE_SHIFT - 3), \istart, \iend, \count mov \sv, \rtbl populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp mov \tbl, \sv .endif .L_\@: compute_indices \vstart, \vend, #PGDIR_SHIFT, #\order, \istart, \iend, \count mov \sv, \rtbl populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp mov \tbl, \sv #if SWAPPER_PGTABLE_LEVELS > 3 compute_indices \vstart, \vend, #PUD_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count mov \sv, \rtbl populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp mov \tbl, \sv #endif #if SWAPPER_PGTABLE_LEVELS > 2 compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count mov \sv, \rtbl populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp mov \tbl, \sv #endif compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #(PAGE_SHIFT - 3), \istart, \iend, \count bic \rtbl, \phys, #SWAPPER_BLOCK_SIZE - 1 populate_entries \tbl, \rtbl, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp .endm /* * Remap a subregion created with the map_memory macro with modified attributes * or output address. The entire remapped region must have been covered in the * invocation of map_memory. * * x0: last level table address (returned in first argument to map_memory) * x1: start VA of the existing mapping * x2: start VA of the region to update * x3: end VA of the region to update (exclusive) * x4: start PA associated with the region to update * x5: attributes to set on the updated region * x6: order of the last level mappings */ SYM_FUNC_START_LOCAL(remap_region) sub x3, x3, #1 // make end inclusive // Get the index offset for the start of the last level table lsr x1, x1, x6 bfi x1, xzr, #0, #PAGE_SHIFT - 3 // Derive the start and end indexes into the last level table // associated with the provided region lsr x2, x2, x6 lsr x3, x3, x6 sub x2, x2, x1 sub x3, x3, x1 mov x1, #1 lsl x6, x1, x6 // block size at this level populate_entries x0, x4, x2, x3, x5, x6, x7 ret SYM_FUNC_END(remap_region) SYM_FUNC_START_LOCAL(create_idmap) mov x28, lr /* * The ID map carries a 1:1 mapping of the physical address range * covered by the loaded image, which could be anywhere in DRAM. This * means that the required size of the VA (== PA) space is decided at * boot time, and could be more than the configured size of the VA * space for ordinary kernel and user space mappings. * * There are three cases to consider here: * - 39 <= VA_BITS < 48, and the ID map needs up to 48 VA bits to cover * the placement of the image. In this case, we configure one extra * level of translation on the fly for the ID map only. (This case * also covers 42-bit VA/52-bit PA on 64k pages). * * - VA_BITS == 48, and the ID map needs more than 48 VA bits. This can * only happen when using 64k pages, in which case we need to extend * the root level table rather than add a level. Note that we can * treat this case as 'always extended' as long as we take care not * to program an unsupported T0SZ value into the TCR register. * * - Combinations that would require two additional levels of * translation are not supported, e.g., VA_BITS==36 on 16k pages, or * VA_BITS==39/4k pages with 5-level paging, where the input address * requires more than 47 or 48 bits, respectively. */ #if (VA_BITS < 48) #define IDMAP_PGD_ORDER (VA_BITS - PGDIR_SHIFT) #define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3) /* * If VA_BITS < 48, we have to configure an additional table level. * First, we have to verify our assumption that the current value of * VA_BITS was chosen such that all translation levels are fully * utilised, and that lowering T0SZ will always result in an additional * translation level to be configured. */ #if VA_BITS != EXTRA_SHIFT #error "Mismatch between VA_BITS and page size/number of translation levels" #endif #else #define IDMAP_PGD_ORDER (PHYS_MASK_SHIFT - PGDIR_SHIFT) #define EXTRA_SHIFT /* * If VA_BITS == 48, we don't have to configure an additional * translation level, but the top-level table has more entries. */ #endif adrp x0, init_idmap_pg_dir adrp x3, _text adrp x6, _end + MAX_FDT_SIZE + SWAPPER_BLOCK_SIZE mov_q x7, SWAPPER_RX_MMUFLAGS map_memory x0, x1, x3, x6, x7, x3, IDMAP_PGD_ORDER, x10, x11, x12, x13, x14, EXTRA_SHIFT /* Remap the kernel page tables r/w in the ID map */ adrp x1, _text adrp x2, init_pg_dir adrp x3, init_pg_end bic x4, x2, #SWAPPER_BLOCK_SIZE - 1 mov_q x5, SWAPPER_RW_MMUFLAGS mov x6, #SWAPPER_BLOCK_SHIFT bl remap_region /* Remap the FDT after the kernel image */ adrp x1, _text adrp x22, _end + SWAPPER_BLOCK_SIZE bic x2, x22, #SWAPPER_BLOCK_SIZE - 1 bfi x22, x21, #0, #SWAPPER_BLOCK_SHIFT // remapped FDT address add x3, x2, #MAX_FDT_SIZE + SWAPPER_BLOCK_SIZE bic x4, x21, #SWAPPER_BLOCK_SIZE - 1 mov_q x5, SWAPPER_RW_MMUFLAGS mov x6, #SWAPPER_BLOCK_SHIFT bl remap_region /* * Since the page tables have been populated with non-cacheable * accesses (MMU disabled), invalidate those tables again to * remove any speculatively loaded cache lines. */ cbnz x19, 0f // skip cache invalidation if MMU is on dmb sy adrp x0, init_idmap_pg_dir adrp x1, init_idmap_pg_end bl dcache_inval_poc 0: ret x28 SYM_FUNC_END(create_idmap) SYM_FUNC_START_LOCAL(create_kernel_mapping) adrp x0, init_pg_dir mov_q x5, KIMAGE_VADDR // compile time __va(_text) #ifdef CONFIG_RELOCATABLE add x5, x5, x23 // add KASLR displacement #endif adrp x6, _end // runtime __pa(_end) adrp x3, _text // runtime __pa(_text) sub x6, x6, x3 // _end - _text add x6, x6, x5 // runtime __va(_end) mov_q x7, SWAPPER_RW_MMUFLAGS map_memory x0, x1, x5, x6, x7, x3, (VA_BITS - PGDIR_SHIFT), x10, x11, x12, x13, x14 dsb ishst // sync with page table walker ret SYM_FUNC_END(create_kernel_mapping) /* * Initialize CPU registers with task-specific and cpu-specific context. * * Create a final frame record at task_pt_regs(current)->stackframe, so * that the unwinder can identify the final frame record of any task by * its location in the task stack. We reserve the entire pt_regs space * for consistency with user tasks and kthreads. */ .macro init_cpu_task tsk, tmp1, tmp2 msr sp_el0, \tsk ldr \tmp1, [\tsk, #TSK_STACK] add sp, \tmp1, #THREAD_SIZE sub sp, sp, #PT_REGS_SIZE stp xzr, xzr, [sp, #S_STACKFRAME] add x29, sp, #S_STACKFRAME scs_load_current adr_l \tmp1, __per_cpu_offset ldr w\tmp2, [\tsk, #TSK_TI_CPU] ldr \tmp1, [\tmp1, \tmp2, lsl #3] set_this_cpu_offset \tmp1 .endm /* * The following fragment of code is executed with the MMU enabled. * * x0 = __pa(KERNEL_START) */ SYM_FUNC_START_LOCAL(__primary_switched) adr_l x4, init_task init_cpu_task x4, x5, x6 adr_l x8, vectors // load VBAR_EL1 with virtual msr vbar_el1, x8 // vector table address isb stp x29, x30, [sp, #-16]! mov x29, sp str_l x21, __fdt_pointer, x5 // Save FDT pointer ldr_l x4, kimage_vaddr // Save the offset between sub x4, x4, x0 // the kernel virtual and str_l x4, kimage_voffset, x5 // physical mappings mov x0, x20 bl set_cpu_boot_mode_flag // Clear BSS adr_l x0, __bss_start mov x1, xzr adr_l x2, __bss_stop sub x2, x2, x0 bl __pi_memset dsb ishst // Make zero page visible to PTW #if VA_BITS > 48 adr_l x8, vabits_actual // Set this early so KASAN early init str x25, [x8] // ... observes the correct value dc civac, x8 // Make visible to booting secondaries #endif #ifdef CONFIG_RANDOMIZE_BASE adrp x5, memstart_offset_seed // Save KASLR linear map seed strh w24, [x5, :lo12:memstart_offset_seed] #endif #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) bl kasan_early_init #endif mov x0, x21 // pass FDT address in x0 bl early_fdt_map // Try mapping the FDT early mov x0, x20 // pass the full boot status bl init_feature_override // Parse cpu feature overrides #ifdef CONFIG_UNWIND_PATCH_PAC_INTO_SCS bl scs_patch_vmlinux #endif mov x0, x20 bl finalise_el2 // Prefer VHE if possible ldp x29, x30, [sp], #16 bl start_kernel ASM_BUG() SYM_FUNC_END(__primary_switched) /* * end early head section, begin head code that is also used for * hotplug and needs to have the same protections as the text region */ .section ".idmap.text","a" /* * Starting from EL2 or EL1, configure the CPU to execute at the highest * reachable EL supported by the kernel in a chosen default state. If dropping * from EL2 to EL1, configure EL2 before configuring EL1. * * Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if * SCTLR_ELx.EOS is clear), we place an ISB prior to ERET. * * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x0 if * booted in EL1 or EL2 respectively, with the top 32 bits containing * potential context flags. These flags are *not* stored in __boot_cpu_mode. * * x0: whether we are being called from the primary boot path with the MMU on */ SYM_FUNC_START(init_kernel_el) mrs x1, CurrentEL cmp x1, #CurrentEL_EL2 b.eq init_el2 SYM_INNER_LABEL(init_el1, SYM_L_LOCAL) mov_q x0, INIT_SCTLR_EL1_MMU_OFF pre_disable_mmu_workaround msr sctlr_el1, x0 isb mov_q x0, INIT_PSTATE_EL1 msr spsr_el1, x0 msr elr_el1, lr mov w0, #BOOT_CPU_MODE_EL1 eret SYM_INNER_LABEL(init_el2, SYM_L_LOCAL) msr elr_el2, lr // clean all HYP code to the PoC if we booted at EL2 with the MMU on cbz x0, 0f adrp x0, __hyp_idmap_text_start adr_l x1, __hyp_text_end adr_l x2, dcache_clean_poc blr x2 mov_q x0, INIT_SCTLR_EL2_MMU_OFF pre_disable_mmu_workaround msr sctlr_el2, x0 isb 0: mov_q x0, HCR_HOST_NVHE_FLAGS msr hcr_el2, x0 isb init_el2_state /* Hypervisor stub */ adr_l x0, __hyp_stub_vectors msr vbar_el2, x0 isb mov_q x1, INIT_SCTLR_EL1_MMU_OFF /* * Fruity CPUs seem to have HCR_EL2.E2H set to RES1, * making it impossible to start in nVHE mode. Is that * compliant with the architecture? Absolutely not! */ mrs x0, hcr_el2 and x0, x0, #HCR_E2H cbz x0, 1f /* Set a sane SCTLR_EL1, the VHE way */ pre_disable_mmu_workaround msr_s SYS_SCTLR_EL12, x1 mov x2, #BOOT_CPU_FLAG_E2H b 2f 1: pre_disable_mmu_workaround msr sctlr_el1, x1 mov x2, xzr 2: __init_el2_nvhe_prepare_eret mov w0, #BOOT_CPU_MODE_EL2 orr x0, x0, x2 eret SYM_FUNC_END(init_kernel_el) /* * This provides a "holding pen" for platforms to hold all secondary * cores are held until we're ready for them to initialise. */ SYM_FUNC_START(secondary_holding_pen) mov x0, xzr bl init_kernel_el // w0=cpu_boot_mode mrs x2, mpidr_el1 mov_q x1, MPIDR_HWID_BITMASK and x2, x2, x1 adr_l x3, secondary_holding_pen_release pen: ldr x4, [x3] cmp x4, x2 b.eq secondary_startup wfe b pen SYM_FUNC_END(secondary_holding_pen) /* * Secondary entry point that jumps straight into the kernel. Only to * be used where CPUs are brought online dynamically by the kernel. */ SYM_FUNC_START(secondary_entry) mov x0, xzr bl init_kernel_el // w0=cpu_boot_mode b secondary_startup SYM_FUNC_END(secondary_entry) SYM_FUNC_START_LOCAL(secondary_startup) /* * Common entry point for secondary CPUs. */ mov x20, x0 // preserve boot mode bl __cpu_secondary_check52bitva #if VA_BITS > 48 ldr_l x0, vabits_actual #endif bl __cpu_setup // initialise processor adrp x1, swapper_pg_dir adrp x2, idmap_pg_dir bl __enable_mmu ldr x8, =__secondary_switched br x8 SYM_FUNC_END(secondary_startup) .text SYM_FUNC_START_LOCAL(__secondary_switched) mov x0, x20 bl set_cpu_boot_mode_flag mov x0, x20 bl finalise_el2 str_l xzr, __early_cpu_boot_status, x3 adr_l x5, vectors msr vbar_el1, x5 isb adr_l x0, secondary_data ldr x2, [x0, #CPU_BOOT_TASK] cbz x2, __secondary_too_slow init_cpu_task x2, x1, x3 #ifdef CONFIG_ARM64_PTR_AUTH ptrauth_keys_init_cpu x2, x3, x4, x5 #endif bl secondary_start_kernel ASM_BUG() SYM_FUNC_END(__secondary_switched) SYM_FUNC_START_LOCAL(__secondary_too_slow) wfe wfi b __secondary_too_slow SYM_FUNC_END(__secondary_too_slow) /* * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed * in w0. See arch/arm64/include/asm/virt.h for more info. */ SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag) adr_l x1, __boot_cpu_mode cmp w0, #BOOT_CPU_MODE_EL2 b.ne 1f add x1, x1, #4 1: str w0, [x1] // Save CPU boot mode ret SYM_FUNC_END(set_cpu_boot_mode_flag) /* * The booting CPU updates the failed status @__early_cpu_boot_status, * with MMU turned off. * * update_early_cpu_boot_status tmp, status * - Corrupts tmp1, tmp2 * - Writes 'status' to __early_cpu_boot_status and makes sure * it is committed to memory. */ .macro update_early_cpu_boot_status status, tmp1, tmp2 mov \tmp2, #\status adr_l \tmp1, __early_cpu_boot_status str \tmp2, [\tmp1] dmb sy dc ivac, \tmp1 // Invalidate potentially stale cache line .endm /* * Enable the MMU. * * x0 = SCTLR_EL1 value for turning on the MMU. * x1 = TTBR1_EL1 value * x2 = ID map root table address * * Returns to the caller via x30/lr. This requires the caller to be covered * by the .idmap.text section. * * Checks if the selected granule size is supported by the CPU. * If it isn't, park the CPU */ .section ".idmap.text","a" SYM_FUNC_START(__enable_mmu) mrs x3, ID_AA64MMFR0_EL1 ubfx x3, x3, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4 cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MIN b.lt __no_granule_support cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MAX b.gt __no_granule_support phys_to_ttbr x2, x2 msr ttbr0_el1, x2 // load TTBR0 load_ttbr1 x1, x1, x3 set_sctlr_el1 x0 ret SYM_FUNC_END(__enable_mmu) SYM_FUNC_START(__cpu_secondary_check52bitva) #if VA_BITS > 48 ldr_l x0, vabits_actual cmp x0, #52 b.ne 2f mrs_s x0, SYS_ID_AA64MMFR2_EL1 and x0, x0, ID_AA64MMFR2_EL1_VARange_MASK cbnz x0, 2f update_early_cpu_boot_status \ CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1 1: wfe wfi b 1b #endif 2: ret SYM_FUNC_END(__cpu_secondary_check52bitva) SYM_FUNC_START_LOCAL(__no_granule_support) /* Indicate that this CPU can't boot and is stuck in the kernel */ update_early_cpu_boot_status \ CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2 1: wfe wfi b 1b SYM_FUNC_END(__no_granule_support) #ifdef CONFIG_RELOCATABLE SYM_FUNC_START_LOCAL(__relocate_kernel) /* * Iterate over each entry in the relocation table, and apply the * relocations in place. */ adr_l x9, __rela_start adr_l x10, __rela_end mov_q x11, KIMAGE_VADDR // default virtual offset add x11, x11, x23 // actual virtual offset 0: cmp x9, x10 b.hs 1f ldp x12, x13, [x9], #24 ldr x14, [x9, #-8] cmp w13, #R_AARCH64_RELATIVE b.ne 0b add x14, x14, x23 // relocate str x14, [x12, x23] b 0b 1: #ifdef CONFIG_RELR /* * Apply RELR relocations. * * RELR is a compressed format for storing relative relocations. The * encoded sequence of entries looks like: * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] * * i.e. start with an address, followed by any number of bitmaps. The * address entry encodes 1 relocation. The subsequent bitmap entries * encode up to 63 relocations each, at subsequent offsets following * the last address entry. * * The bitmap entries must have 1 in the least significant bit. The * assumption here is that an address cannot have 1 in lsb. Odd * addresses are not supported. Any odd addresses are stored in the RELA * section, which is handled above. * * Excluding the least significant bit in the bitmap, each non-zero * bit in the bitmap represents a relocation to be applied to * a corresponding machine word that follows the base address * word. The second least significant bit represents the machine * word immediately following the initial address, and each bit * that follows represents the next word, in linear order. As such, * a single bitmap can encode up to 63 relocations in a 64-bit object. * * In this implementation we store the address of the next RELR table * entry in x9, the address being relocated by the current address or * bitmap entry in x13 and the address being relocated by the current * bit in x14. */ adr_l x9, __relr_start adr_l x10, __relr_end 2: cmp x9, x10 b.hs 7f ldr x11, [x9], #8 tbnz x11, #0, 3f // branch to handle bitmaps add x13, x11, x23 ldr x12, [x13] // relocate address entry add x12, x12, x23 str x12, [x13], #8 // adjust to start of bitmap b 2b 3: mov x14, x13 4: lsr x11, x11, #1 cbz x11, 6f tbz x11, #0, 5f // skip bit if not set ldr x12, [x14] // relocate bit add x12, x12, x23 str x12, [x14] 5: add x14, x14, #8 // move to next bit's address b 4b 6: /* * Move to the next bitmap's address. 8 is the word size, and 63 is the * number of significant bits in a bitmap entry. */ add x13, x13, #(8 * 63) b 2b 7: #endif ret SYM_FUNC_END(__relocate_kernel) #endif SYM_FUNC_START_LOCAL(__primary_switch) adrp x1, reserved_pg_dir adrp x2, init_idmap_pg_dir bl __enable_mmu #ifdef CONFIG_RELOCATABLE adrp x23, KERNEL_START and x23, x23, MIN_KIMG_ALIGN - 1 #ifdef CONFIG_RANDOMIZE_BASE mov x0, x22 adrp x1, init_pg_end mov sp, x1 mov x29, xzr bl __pi_kaslr_early_init and x24, x0, #SZ_2M - 1 // capture memstart offset seed bic x0, x0, #SZ_2M - 1 orr x23, x23, x0 // record kernel offset #endif #endif bl clear_page_tables bl create_kernel_mapping adrp x1, init_pg_dir load_ttbr1 x1, x1, x2 #ifdef CONFIG_RELOCATABLE bl __relocate_kernel #endif ldr x8, =__primary_switched adrp x0, KERNEL_START // __pa(KERNEL_START) br x8 SYM_FUNC_END(__primary_switch)