// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/mm/fault.c * * Copyright (C) 1995 Linus Torvalds * Modifications for ARM processor (c) 1995-2004 Russell King */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fault.h" #ifdef CONFIG_MMU /* * This is useful to dump out the page tables associated with * 'addr' in mm 'mm'. */ void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; if (!mm) mm = &init_mm; pgd = pgd_offset(mm, addr); printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd)); do { p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte; p4d = p4d_offset(pgd, addr); if (p4d_none(*p4d)) break; if (p4d_bad(*p4d)) { pr_cont("(bad)"); break; } pud = pud_offset(p4d, addr); if (PTRS_PER_PUD != 1) pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); if (pud_none(*pud)) break; if (pud_bad(*pud)) { pr_cont("(bad)"); break; } pmd = pmd_offset(pud, addr); if (PTRS_PER_PMD != 1) pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); if (pmd_none(*pmd)) break; if (pmd_bad(*pmd)) { pr_cont("(bad)"); break; } /* We must not map this if we have highmem enabled */ if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) break; pte = pte_offset_map(pmd, addr); if (!pte) break; pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); #ifndef CONFIG_ARM_LPAE pr_cont(", *ppte=%08llx", (long long)pte_val(pte[PTE_HWTABLE_PTRS])); #endif pte_unmap(pte); } while(0); pr_cont("\n"); } #else /* CONFIG_MMU */ void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr) { } #endif /* CONFIG_MMU */ static inline bool is_write_fault(unsigned int fsr) { return (fsr & FSR_WRITE) && !(fsr & FSR_CM); } static inline bool is_translation_fault(unsigned int fsr) { int fs = fsr_fs(fsr); #ifdef CONFIG_ARM_LPAE if ((fs & FS_MMU_NOLL_MASK) == FS_TRANS_NOLL) return true; #else if (fs == FS_L1_TRANS || fs == FS_L2_TRANS) return true; #endif return false; } static void die_kernel_fault(const char *msg, struct mm_struct *mm, unsigned long addr, unsigned int fsr, struct pt_regs *regs) { bust_spinlocks(1); pr_alert("8<--- cut here ---\n"); pr_alert("Unable to handle kernel %s at virtual address %08lx when %s\n", msg, addr, fsr & FSR_LNX_PF ? "execute" : fsr & FSR_WRITE ? "write" : "read"); show_pte(KERN_ALERT, mm, addr); die("Oops", regs, fsr); bust_spinlocks(0); make_task_dead(SIGKILL); } /* * Oops. The kernel tried to access some page that wasn't present. */ static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, struct pt_regs *regs) { const char *msg; /* * Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) return; /* * No handler, we'll have to terminate things with extreme prejudice. */ if (addr < PAGE_SIZE) { msg = "NULL pointer dereference"; } else { if (is_translation_fault(fsr) && kfence_handle_page_fault(addr, is_write_fault(fsr), regs)) return; msg = "paging request"; } die_kernel_fault(msg, mm, addr, fsr, regs); } /* * Something tried to access memory that isn't in our memory map.. * User mode accesses just cause a SIGSEGV */ static void __do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig, int code, struct pt_regs *regs) { struct task_struct *tsk = current; if (addr > TASK_SIZE) harden_branch_predictor(); #ifdef CONFIG_DEBUG_USER if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || ((user_debug & UDBG_BUS) && (sig == SIGBUS))) { pr_err("8<--- cut here ---\n"); pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", tsk->comm, sig, addr, fsr); show_pte(KERN_ERR, tsk->mm, addr); show_regs(regs); } #endif #ifndef CONFIG_KUSER_HELPERS if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000)) printk_ratelimited(KERN_DEBUG "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n", tsk->comm, addr); #endif tsk->thread.address = addr; tsk->thread.error_code = fsr; tsk->thread.trap_no = 14; force_sig_fault(sig, code, (void __user *)addr); } void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { struct task_struct *tsk = current; struct mm_struct *mm = tsk->active_mm; /* * If we are in kernel mode at this point, we * have no context to handle this fault with. */ if (user_mode(regs)) __do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs); else __do_kernel_fault(mm, addr, fsr, regs); } #ifdef CONFIG_MMU #define VM_FAULT_BADMAP ((__force vm_fault_t)0x010000) #define VM_FAULT_BADACCESS ((__force vm_fault_t)0x020000) static inline bool is_permission_fault(unsigned int fsr) { int fs = fsr_fs(fsr); #ifdef CONFIG_ARM_LPAE if ((fs & FS_MMU_NOLL_MASK) == FS_PERM_NOLL) return true; #else if (fs == FS_L1_PERM || fs == FS_L2_PERM) return true; #endif return false; } static vm_fault_t __kprobes __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int flags, unsigned long vma_flags, struct pt_regs *regs) { struct vm_area_struct *vma = find_vma(mm, addr); if (unlikely(!vma)) return VM_FAULT_BADMAP; if (unlikely(vma->vm_start > addr)) { if (!(vma->vm_flags & VM_GROWSDOWN)) return VM_FAULT_BADMAP; if (addr < FIRST_USER_ADDRESS) return VM_FAULT_BADMAP; if (expand_stack(vma, addr)) return VM_FAULT_BADMAP; } /* * ok, we have a good vm_area for this memory access, check the * permissions on the VMA allow for the fault which occurred. */ if (!(vma->vm_flags & vma_flags)) return VM_FAULT_BADACCESS; return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs); } static int __kprobes do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { struct mm_struct *mm = current->mm; int sig, code; vm_fault_t fault; unsigned int flags = FAULT_FLAG_DEFAULT; unsigned long vm_flags = VM_ACCESS_FLAGS; if (kprobe_page_fault(regs, fsr)) return 0; /* Enable interrupts if they were enabled in the parent context. */ if (interrupts_enabled(regs)) local_irq_enable(); /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (faulthandler_disabled() || !mm) goto no_context; if (user_mode(regs)) flags |= FAULT_FLAG_USER; if (is_write_fault(fsr)) { flags |= FAULT_FLAG_WRITE; vm_flags = VM_WRITE; } if (fsr & FSR_LNX_PF) { vm_flags = VM_EXEC; if (is_permission_fault(fsr) && !user_mode(regs)) die_kernel_fault("execution of memory", mm, addr, fsr, regs); } perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); /* * As per x86, we may deadlock here. However, since the kernel only * validly references user space from well defined areas of the code, * we can bug out early if this is from code which shouldn't. */ if (!mmap_read_trylock(mm)) { if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) goto no_context; retry: mmap_read_lock(mm); } else { /* * The above down_read_trylock() might have succeeded in * which case, we'll have missed the might_sleep() from * down_read() */ might_sleep(); #ifdef CONFIG_DEBUG_VM if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) goto no_context; #endif } fault = __do_page_fault(mm, addr, flags, vm_flags, regs); /* If we need to retry but a fatal signal is pending, handle the * signal first. We do not need to release the mmap_lock because * it would already be released in __lock_page_or_retry in * mm/filemap.c. */ if (fault_signal_pending(fault, regs)) { if (!user_mode(regs)) goto no_context; return 0; } /* The fault is fully completed (including releasing mmap lock) */ if (fault & VM_FAULT_COMPLETED) return 0; if (!(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_RETRY) { flags |= FAULT_FLAG_TRIED; goto retry; } } mmap_read_unlock(mm); /* * Handle the "normal" case first - VM_FAULT_MAJOR */ if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) return 0; /* * If we are in kernel mode at this point, we * have no context to handle this fault with. */ if (!user_mode(regs)) goto no_context; if (fault & VM_FAULT_OOM) { /* * We ran out of memory, call the OOM killer, and return to * userspace (which will retry the fault, or kill us if we * got oom-killed) */ pagefault_out_of_memory(); return 0; } if (fault & VM_FAULT_SIGBUS) { /* * We had some memory, but were unable to * successfully fix up this page fault. */ sig = SIGBUS; code = BUS_ADRERR; } else { /* * Something tried to access memory that * isn't in our memory map.. */ sig = SIGSEGV; code = fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR; } __do_user_fault(addr, fsr, sig, code, regs); return 0; no_context: __do_kernel_fault(mm, addr, fsr, regs); return 0; } #else /* CONFIG_MMU */ static int do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { return 0; } #endif /* CONFIG_MMU */ /* * First Level Translation Fault Handler * * We enter here because the first level page table doesn't contain * a valid entry for the address. * * If the address is in kernel space (>= TASK_SIZE), then we are * probably faulting in the vmalloc() area. * * If the init_task's first level page tables contains the relevant * entry, we copy the it to this task. If not, we send the process * a signal, fixup the exception, or oops the kernel. * * NOTE! We MUST NOT take any locks for this case. We may be in an * interrupt or a critical region, and should only copy the information * from the master page table, nothing more. */ #ifdef CONFIG_MMU static int __kprobes do_translation_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { unsigned int index; pgd_t *pgd, *pgd_k; p4d_t *p4d, *p4d_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; if (addr < TASK_SIZE) return do_page_fault(addr, fsr, regs); if (user_mode(regs)) goto bad_area; index = pgd_index(addr); pgd = cpu_get_pgd() + index; pgd_k = init_mm.pgd + index; p4d = p4d_offset(pgd, addr); p4d_k = p4d_offset(pgd_k, addr); if (p4d_none(*p4d_k)) goto bad_area; if (!p4d_present(*p4d)) set_p4d(p4d, *p4d_k); pud = pud_offset(p4d, addr); pud_k = pud_offset(p4d_k, addr); if (pud_none(*pud_k)) goto bad_area; if (!pud_present(*pud)) set_pud(pud, *pud_k); pmd = pmd_offset(pud, addr); pmd_k = pmd_offset(pud_k, addr); #ifdef CONFIG_ARM_LPAE /* * Only one hardware entry per PMD with LPAE. */ index = 0; #else /* * On ARM one Linux PGD entry contains two hardware entries (see page * tables layout in pgtable.h). We normally guarantee that we always * fill both L1 entries. But create_mapping() doesn't follow the rule. * It can create inidividual L1 entries, so here we have to call * pmd_none() check for the entry really corresponded to address, not * for the first of pair. */ index = (addr >> SECTION_SHIFT) & 1; #endif if (pmd_none(pmd_k[index])) goto bad_area; copy_pmd(pmd, pmd_k); return 0; bad_area: do_bad_area(addr, fsr, regs); return 0; } #else /* CONFIG_MMU */ static int do_translation_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { return 0; } #endif /* CONFIG_MMU */ /* * Some section permission faults need to be handled gracefully. * They can happen due to a __{get,put}_user during an oops. */ #ifndef CONFIG_ARM_LPAE static int do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { do_bad_area(addr, fsr, regs); return 0; } #endif /* CONFIG_ARM_LPAE */ /* * This abort handler always returns "fault". */ static int do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { return 1; } struct fsr_info { int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); int sig; int code; const char *name; }; /* FSR definition */ #ifdef CONFIG_ARM_LPAE #include "fsr-3level.c" #else #include "fsr-2level.c" #endif void __init hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), int sig, int code, const char *name) { if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) BUG(); fsr_info[nr].fn = fn; fsr_info[nr].sig = sig; fsr_info[nr].code = code; fsr_info[nr].name = name; } /* * Dispatch a data abort to the relevant handler. */ asmlinkage void do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { const struct fsr_info *inf = fsr_info + fsr_fs(fsr); if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) return; pr_alert("8<--- cut here ---\n"); pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", inf->name, fsr, addr); show_pte(KERN_ALERT, current->mm, addr); arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, fsr, 0); } void __init hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), int sig, int code, const char *name) { if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) BUG(); ifsr_info[nr].fn = fn; ifsr_info[nr].sig = sig; ifsr_info[nr].code = code; ifsr_info[nr].name = name; } asmlinkage void do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) { const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) return; pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", inf->name, ifsr, addr); arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr, ifsr, 0); } /* * Abort handler to be used only during first unmasking of asynchronous aborts * on the boot CPU. This makes sure that the machine will not die if the * firmware/bootloader left an imprecise abort pending for us to trip over. */ static int __init early_abort_handler(unsigned long addr, unsigned int fsr, struct pt_regs *regs) { pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " "first unmask, this is most likely caused by a " "firmware/bootloader bug.\n", fsr); return 0; } void __init early_abt_enable(void) { fsr_info[FSR_FS_AEA].fn = early_abort_handler; local_abt_enable(); fsr_info[FSR_FS_AEA].fn = do_bad; } #ifndef CONFIG_ARM_LPAE static int __init exceptions_init(void) { if (cpu_architecture() >= CPU_ARCH_ARMv6) { hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, "I-cache maintenance fault"); } if (cpu_architecture() >= CPU_ARCH_ARMv7) { /* * TODO: Access flag faults introduced in ARMv6K. * Runtime check for 'K' extension is needed */ hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, "section access flag fault"); hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, "section access flag fault"); } return 0; } arch_initcall(exceptions_init); #endif