// SPDX-License-Identifier: GPL-2.0-only /* * Based on linux/arch/arm/mm/dma-mapping.c * * Copyright (C) 2000-2004 Russell King */ #include <linux/export.h> #include <linux/mm.h> #include <linux/dma-direct.h> #include <linux/dma-map-ops.h> #include <linux/scatterlist.h> #include <asm/cachetype.h> #include <asm/cacheflush.h> #include <asm/outercache.h> #include <asm/cp15.h> #include "dma.h" /* * The generic direct mapping code is used if * - MMU/MPU is off * - cpu is v7m w/o cache support * - device is coherent * otherwise arm_nommu_dma_ops is used. * * arm_nommu_dma_ops rely on consistent DMA memory (please, refer to * [1] on how to declare such memory). * * [1] Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt */ static void *arm_nommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { void *ret = dma_alloc_from_global_coherent(dev, size, dma_handle); /* * dma_alloc_from_global_coherent() may fail because: * * - no consistent DMA region has been defined, so we can't * continue. * - there is no space left in consistent DMA region, so we * only can fallback to generic allocator if we are * advertised that consistency is not required. */ WARN_ON_ONCE(ret == NULL); return ret; } static void arm_nommu_dma_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { int ret = dma_release_from_global_coherent(get_order(size), cpu_addr); WARN_ON_ONCE(ret == 0); } static int arm_nommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { int ret; if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) return ret; if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) return ret; return -ENXIO; } static void __dma_page_cpu_to_dev(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { dmac_map_area(__va(paddr), size, dir); if (dir == DMA_FROM_DEVICE) outer_inv_range(paddr, paddr + size); else outer_clean_range(paddr, paddr + size); } static void __dma_page_dev_to_cpu(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { if (dir != DMA_TO_DEVICE) { outer_inv_range(paddr, paddr + size); dmac_unmap_area(__va(paddr), size, dir); } } static dma_addr_t arm_nommu_dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { dma_addr_t handle = page_to_phys(page) + offset; __dma_page_cpu_to_dev(handle, size, dir); return handle; } static void arm_nommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir, unsigned long attrs) { __dma_page_dev_to_cpu(handle, size, dir); } static int arm_nommu_dma_map_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { int i; struct scatterlist *sg; for_each_sg(sgl, sg, nents, i) { sg_dma_address(sg) = sg_phys(sg); sg_dma_len(sg) = sg->length; __dma_page_cpu_to_dev(sg_dma_address(sg), sg_dma_len(sg), dir); } return nents; } static void arm_nommu_dma_unmap_sg(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) __dma_page_dev_to_cpu(sg_dma_address(sg), sg_dma_len(sg), dir); } static void arm_nommu_dma_sync_single_for_device(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir) { __dma_page_cpu_to_dev(handle, size, dir); } static void arm_nommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir) { __dma_page_cpu_to_dev(handle, size, dir); } static void arm_nommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) __dma_page_cpu_to_dev(sg_dma_address(sg), sg_dma_len(sg), dir); } static void arm_nommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, int nents, enum dma_data_direction dir) { struct scatterlist *sg; int i; for_each_sg(sgl, sg, nents, i) __dma_page_dev_to_cpu(sg_dma_address(sg), sg_dma_len(sg), dir); } const struct dma_map_ops arm_nommu_dma_ops = { .alloc = arm_nommu_dma_alloc, .free = arm_nommu_dma_free, .alloc_pages = dma_direct_alloc_pages, .free_pages = dma_direct_free_pages, .mmap = arm_nommu_dma_mmap, .map_page = arm_nommu_dma_map_page, .unmap_page = arm_nommu_dma_unmap_page, .map_sg = arm_nommu_dma_map_sg, .unmap_sg = arm_nommu_dma_unmap_sg, .sync_single_for_device = arm_nommu_dma_sync_single_for_device, .sync_single_for_cpu = arm_nommu_dma_sync_single_for_cpu, .sync_sg_for_device = arm_nommu_dma_sync_sg_for_device, .sync_sg_for_cpu = arm_nommu_dma_sync_sg_for_cpu, }; EXPORT_SYMBOL(arm_nommu_dma_ops); void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, const struct iommu_ops *iommu, bool coherent) { if (IS_ENABLED(CONFIG_CPU_V7M)) { /* * Cache support for v7m is optional, so can be treated as * coherent if no cache has been detected. Note that it is not * enough to check if MPU is in use or not since in absense of * MPU system memory map is used. */ dev->archdata.dma_coherent = (cacheid) ? coherent : true; } else { /* * Assume coherent DMA in case MMU/MPU has not been set up. */ dev->archdata.dma_coherent = (get_cr() & CR_M) ? coherent : true; } if (!dev->archdata.dma_coherent) set_dma_ops(dev, &arm_nommu_dma_ops); }