#include "writefrudata.hpp" #include "fru_area.hpp" #include "frup.hpp" #include "types.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace ipmi::vpd; extern const FruMap frus; extern const std::map extras; using FruAreaVector = std::vector>; namespace { /** * Cleanup routine * Must always be called as last reference to fruFilePointer. * * @param[in] fruFilePointer - FRU file pointer to close * @param[in] fruAreaVec - vector of FRU areas * @return -1 */ int cleanupError(FILE* fruFilePointer, FruAreaVector& fruAreaVec) { if (fruFilePointer != nullptr) { std::fclose(fruFilePointer); } if (!(fruAreaVec.empty())) { fruAreaVec.clear(); } return -1; } /** * Gets the value of the key from the FRU dictionary of the given section. * FRU dictionary is parsed FRU data for all the sections. * * @param[in] section - FRU section name * @param[in] key - key for section * @param[in] delimiter - delimiter for parsing custom fields * @param[in] fruData - the FRU data to search for the section * @return FRU value */ std::string getFRUValue(const std::string& section, const std::string& key, const std::string& delimiter, IPMIFruInfo& fruData) { auto minIndexValue = 0; auto maxIndexValue = 0; std::string fruValue = ""; if (section == "Board") { minIndexValue = OPENBMC_VPD_KEY_BOARD_MFG_DATE; maxIndexValue = OPENBMC_VPD_KEY_BOARD_MAX; } else if (section == "Product") { minIndexValue = OPENBMC_VPD_KEY_PRODUCT_MFR; maxIndexValue = OPENBMC_VPD_KEY_PRODUCT_MAX; } else if (section == "Chassis") { minIndexValue = OPENBMC_VPD_KEY_CHASSIS_TYPE; maxIndexValue = OPENBMC_VPD_KEY_CHASSIS_MAX; } auto first = fruData.cbegin() + minIndexValue; auto last = first + (maxIndexValue - minIndexValue) + 1; auto itr = std::find_if(first, last, [&key](const auto& e) { return key == e.first; }); if (itr != last) { fruValue = itr->second; } // if the key is custom property then the value could be in two formats. // 1) custom field 2 = "value". // 2) custom field 2 = "key:value". // if delimiter length = 0 i.e custom field 2 = "value" constexpr auto customProp = "Custom Field"; if (key.find(customProp) != std::string::npos) { if (delimiter.length() > 0) { size_t delimiterpos = fruValue.find(delimiter); if (delimiterpos != std::string::npos) { fruValue = fruValue.substr(delimiterpos + 1); } } } return fruValue; } /** * Get the inventory service from the mapper. * * @param[in] bus - sdbusplus handle to use for dbus call * @param[in] intf - interface * @param[in] path - the object path * @return the dbus service that owns the interface for that path */ auto getService(sdbusplus::bus_t& bus, const std::string& intf, const std::string& path) { auto mapperCall = bus.new_method_call("xyz.openbmc_project.ObjectMapper", "/xyz/openbmc_project/object_mapper", "xyz.openbmc_project.ObjectMapper", "GetObject"); mapperCall.append(path); mapperCall.append(std::vector({intf})); std::map> mapperResponse; try { auto mapperResponseMsg = bus.call(mapperCall); mapperResponseMsg.read(mapperResponse); } catch (const sdbusplus::exception_t& ex) { lg2::error("Exception from sdbus call: {ERROR}", "ERROR", ex); throw; } if (mapperResponse.begin() == mapperResponse.end()) { throw std::runtime_error("ERROR in reading the mapper response"); } return mapperResponse.begin()->first; } /** * Takes FRU data, invokes Parser for each FRU record area and updates * inventory. * * @param[in] areaVector - vector of FRU areas * @param[in] bus - handle to sdbus for calling methods, etc * @return return non-zero of failure */ int updateInventory(FruAreaVector& areaVector, sdbusplus::bus_t& bus) { // Generic error reporter int rc = 0; uint8_t fruid = 0; IPMIFruInfo fruData; // For each FRU area, extract the needed data , get it parsed and update // the Inventory. for (const auto& fruArea : areaVector) { fruid = fruArea->getFruID(); // Fill the container with information rc = parse_fru_area(fruArea->getType(), static_cast(fruArea->getData()), fruArea->getLength(), fruData); if (rc < 0) { lg2::error("Error parsing FRU records: {RC}", "RC", rc); return rc; } } // END walking the vector of areas and updating // For each FRU we have the list of instances which needs to be updated. // Each instance object implements certain interfaces. // Each Interface is having Dbus properties. // Each Dbus Property would be having metaData(eg section,VpdPropertyName). // Here we are just printing the object,interface and the properties. // which needs to be called with the new inventory manager implementation. using namespace std::string_literals; static const auto intf = "xyz.openbmc_project.Inventory.Manager"s; static const auto path = "/xyz/openbmc_project/inventory"s; std::string service; try { service = getService(bus, intf, path); } catch (const std::exception& e) { lg2::error("Failed to get service: {ERROR}", "ERROR", e); return -1; } auto iter = frus.find(fruid); if (iter == frus.end()) { lg2::error("Unable to find fru id:({FRUID}) in generated list", "FRUID", fruid); return -1; } auto& instanceList = iter->second; if (instanceList.size() <= 0) { lg2::debug("Object list empty for this fru id:({FRUID})", "FRUID", fruid); } ObjectMap objects; for (const auto& instance : instanceList) { InterfaceMap interfaces; const auto& extrasIter = extras.find(instance.path); for (const auto& interfaceList : instance.interfaces) { PropertyMap props; // store all the properties for (const auto& properties : interfaceList.second) { std::string value; decltype(auto) pdata = properties.second; if (!pdata.section.empty() && !pdata.property.empty()) { value = getFRUValue(pdata.section, pdata.property, pdata.delimiter, fruData); } props.emplace(std::move(properties.first), std::move(value)); } // Check and update extra properties if (extras.end() != extrasIter) { const auto& propsIter = (extrasIter->second).find(interfaceList.first); if ((extrasIter->second).end() != propsIter) { for (const auto& map : propsIter->second) { props.emplace(map.first, map.second); } } } interfaces.emplace(std::move(interfaceList.first), std::move(props)); } // Call the inventory manager sdbusplus::message::object_path objectPath = instance.path; // Check and update extra properties if (extras.end() != extrasIter) { for (const auto& entry : extrasIter->second) { if (interfaces.end() == interfaces.find(entry.first)) { interfaces.emplace(entry.first, entry.second); } } } objects.emplace(objectPath, interfaces); } auto pimMsg = bus.new_method_call(service.c_str(), path.c_str(), intf.c_str(), "Notify"); pimMsg.append(std::move(objects)); try { auto inventoryMgrResponseMsg = bus.call(pimMsg); } catch (const sdbusplus::exception_t& ex) { lg2::error( "Error in notify call, service: {SERVICE}, path: {PATH}, error: {ERROR}", "SERVICE", service, "PATH", path, "ERROR", ex); return -1; } return rc; } } // namespace /** * Takes the pointer to stream of bytes and length and returns the 8 bit * checksum. This algo is per IPMI V2.0 spec * * @param[in] data - data for running crc * @param[in] len - the length over which to run the crc * @return the CRC value */ unsigned char calculateCRC(const unsigned char* data, size_t len) { char crc = 0; size_t byte = 0; for (byte = 0; byte < len; byte++) { crc += *data++; } return (-crc); } /** * Accepts a FRU area offset into a common header and tells which area it is. * * @param[in] areaOffset - offset to lookup the area type * @return the ipmi_fru_area_type */ ipmi_fru_area_type getFruAreaType(uint8_t areaOffset) { ipmi_fru_area_type type = IPMI_FRU_AREA_TYPE_MAX; switch (areaOffset) { case IPMI_FRU_INTERNAL_OFFSET: type = IPMI_FRU_AREA_INTERNAL_USE; break; case IPMI_FRU_CHASSIS_OFFSET: type = IPMI_FRU_AREA_CHASSIS_INFO; break; case IPMI_FRU_BOARD_OFFSET: type = IPMI_FRU_AREA_BOARD_INFO; break; case IPMI_FRU_PRODUCT_OFFSET: type = IPMI_FRU_AREA_PRODUCT_INFO; break; case IPMI_FRU_MULTI_OFFSET: type = IPMI_FRU_AREA_MULTI_RECORD; break; default: type = IPMI_FRU_AREA_TYPE_MAX; } return type; } /** * Validates the data for multirecord fields and CRC if selected * * @param[in] data - the data to verify * @param[in] len - the length of the region to verify * @param[in] validateCrc - whether to validate the CRC * @return non-zero on failure */ int verifyFruMultiRecData(const uint8_t* data, const size_t len, bool validateCrc) { uint8_t checksum = 0; int rc = -1; if (!validateCrc) { // There's nothing else to do for this area. return EXIT_SUCCESS; } // As per the IPMI platform spec, byte[3] is the record checksum. checksum = calculateCRC(data, len); if (checksum != data[3]) { lg2::debug("Checksum mismatch, Calculated={CALC}, Embedded={EMBED}", "CALC", lg2::hex, checksum, "EMBED", lg2::hex, data[3]); return rc; } return EXIT_SUCCESS; } /** * Validates the data for mandatory fields and CRC if selected. * * @param[in] data - the data to verify * @param[in] len - the length of the region to verify * @param[in] validateCrc - whether to validate the CRC * @return non-zero on failure */ int verifyFruData(const uint8_t* data, const size_t len, bool validateCrc) { uint8_t checksum = 0; int rc = -1; // Validate for first byte to always have a value of [1] if (data[0] != IPMI_FRU_HDR_BYTE_ZERO) { lg2::error("Invalid entry in byte-0, entry: {ENTRY}", "ENTRY", lg2::hex, data[0]); return rc; } lg2::debug("Validated in entry_1 of fruData,entry: {ENTRY}", "ENTRY", lg2::hex, data[0]); if (!validateCrc) { // There's nothing else to do for this area. return EXIT_SUCCESS; } // See if the calculated CRC matches with the embedded one. // CRC to be calculated on all except the last one that is CRC itself. checksum = calculateCRC(data, len - 1); if (checksum != data[len - 1]) { lg2::debug("Checksum mismatch, Calculated={CALC}, Embedded={EMBED}", "CALC", lg2::hex, checksum, "EMBED", lg2::hex, data[len]); return rc; } return EXIT_SUCCESS; } /** * Checks if a particular FRU area is populated or not. * * @param[in] reference to FRU area pointer * @return true if the area is empty */ bool removeInvalidArea(const std::unique_ptr& fruArea) { // Filter the ones that are empty if (!(fruArea->getLength())) { return true; } return false; } /** * Populates various FRU areas. * * @prereq : This must be called only after validating common header * @param[in] fruData - pointer to the FRU bytes * @param[in] dataLen - the length of the FRU data * @param[in] fruAreaVec - the FRU area vector to update */ int ipmiPopulateFruAreas(uint8_t* fruData, const size_t dataLen, FruAreaVector& fruAreaVec) { // Now walk the common header and see if the file size has at least the last // offset mentioned by the struct common_header. If the file size is less // than the offset of any if the FRU areas mentioned in the common header, // then we do not have a complete file. for (uint8_t fruEntry = IPMI_FRU_INTERNAL_OFFSET; fruEntry < (sizeof(struct common_header) - 2); fruEntry++) { int rc = -1; // Actual offset in the payload is the offset mentioned in common header // multiplied by 8. Common header is always the first 8 bytes. size_t areaOffset = fruData[fruEntry] * IPMI_EIGHT_BYTES; if (areaOffset && (dataLen < (areaOffset + 2))) { // Our file size is less than what it needs to be. +2 because we are // using area len that is at 2 byte off areaOffset lg2::error("FRU file is incomplete, size: {SIZE}", "SIZE", dataLen); return rc; } else if (areaOffset) { // Read 3 bytes to know the actual size of area. uint8_t areaHeader[3] = {0}; std::memcpy(areaHeader, &((uint8_t*)fruData)[areaOffset], sizeof(areaHeader)); // Size of this area will be the 2nd byte in the FRU area header. size_t areaLen; if (fruEntry == IPMI_FRU_MULTI_OFFSET) { areaLen = areaHeader[2] + IPMI_FRU_MULTIREC_HDR_BYTES; } else { areaLen = areaHeader[1] * IPMI_EIGHT_BYTES; } lg2::debug( "FRU Data, size: {SIZE}, area offset: {OFFSET}, area size: {AREA_SIZE}", "SIZE", dataLen, "OFFSET", areaOffset, "AREA_SIZE", areaLen); // See if we really have that much buffer. We have area offset amd // from there, the actual len. if (dataLen < (areaLen + areaOffset)) { lg2::error("Incomplete FRU file, size: {SIZE}", "SIZE", dataLen); return rc; } auto fruDataView = std::span(&fruData[areaOffset], areaLen); auto areaData = std::vector(fruDataView.begin(), fruDataView.end()); // Validate the CRC, but not for the internal use area, since its // contents beyond the first byte are not defined in the spec and // it may not end with a CRC byte. bool validateCrc = fruEntry != IPMI_FRU_INTERNAL_OFFSET; if (fruEntry == IPMI_FRU_MULTI_OFFSET) { rc = verifyFruMultiRecData(areaData.data(), areaLen, validateCrc); } else { rc = verifyFruData(areaData.data(), areaLen, validateCrc); } if (rc < 0) { lg2::error("Err validating FRU area, offset: {OFFSET}", "OFFSET", areaOffset); return rc; } lg2::debug("Successfully verified area, offset: {OFFSET}", "OFFSET", areaOffset); // We already have a vector that is passed to us containing all // of the fields populated. Update the data portion now. for (auto& iter : fruAreaVec) { if (iter->getType() == getFruAreaType(fruEntry)) { iter->setData(areaData.data(), areaLen); } } } // If we have FRU data present } // Walk struct common_header // Not all the fields will be populated in a FRU data. Mostly all cases will // not have more than 2 or 3. fruAreaVec.erase( std::remove_if(fruAreaVec.begin(), fruAreaVec.end(), removeInvalidArea), fruAreaVec.end()); return EXIT_SUCCESS; } /** * Validates the FRU data per ipmi common header constructs. * Returns with updated struct common_header and also file_size * * @param[in] fruData - the FRU data * @param[in] dataLen - the length of the data * @return non-zero on failure */ int ipmiValidateCommonHeader(const uint8_t* fruData, const size_t dataLen) { int rc = -1; uint8_t commonHdr[sizeof(struct common_header)] = {0}; if (dataLen >= sizeof(commonHdr)) { std::memcpy(commonHdr, fruData, sizeof(commonHdr)); } else { lg2::error("Incomplete FRU data file, size: {SIZE}", "SIZE", dataLen); return rc; } // Verify the CRC and size rc = verifyFruData(commonHdr, sizeof(commonHdr), true); if (rc < 0) { lg2::error("Failed to validate common header"); return rc; } return EXIT_SUCCESS; } int validateFRUArea(const uint8_t fruid, const char* fruFilename, sdbusplus::bus_t& bus) { size_t dataLen = 0; size_t bytesRead = 0; int rc = -1; // Vector that holds individual IPMI FRU AREAs. Although MULTI and INTERNAL // are not used, keeping it here for completeness. FruAreaVector fruAreaVec; for (uint8_t fruEntry = IPMI_FRU_INTERNAL_OFFSET; fruEntry < (sizeof(struct common_header) - 2); fruEntry++) { // Create an object and push onto a vector. std::unique_ptr fruArea = std::make_unique(fruid, getFruAreaType(fruEntry)); // Physically being present bool present = access(fruFilename, F_OK) == 0; fruArea->setPresent(present); fruAreaVec.emplace_back(std::move(fruArea)); } FILE* fruFilePointer = std::fopen(fruFilename, "rb"); if (fruFilePointer == nullptr) { lg2::error("Unable to open {FILE}, error: {ERRNO}", "FILE", fruFilename, "ERRNO", std::strerror(errno)); return cleanupError(fruFilePointer, fruAreaVec); } // Get the size of the file to see if it meets minimum requirement if (std::fseek(fruFilePointer, 0, SEEK_END)) { lg2::error("Unable to seek {FILE}, error: {ERRNO}", "FILE", fruFilename, "ERRNO", std::strerror(errno)); return cleanupError(fruFilePointer, fruAreaVec); } // Allocate a buffer to hold entire file content dataLen = std::ftell(fruFilePointer); auto fruData = std::vector(dataLen, 0); std::rewind(fruFilePointer); bytesRead = std::fread(fruData.data(), dataLen, 1, fruFilePointer); if (bytesRead != 1) { lg2::error( "Failed to reading FRU data, bytesRead: {BYTESREAD}, errno: {ERRNO}", "BYTESREAD", bytesRead, "ERRNO", std::strerror(errno)); return cleanupError(fruFilePointer, fruAreaVec); } // We are done reading. std::fclose(fruFilePointer); fruFilePointer = nullptr; rc = ipmiValidateCommonHeader(fruData.data(), dataLen); if (rc < 0) { return cleanupError(fruFilePointer, fruAreaVec); } // Now that we validated the common header, populate various FRU sections if // we have them here. rc = ipmiPopulateFruAreas(fruData.data(), dataLen, fruAreaVec); if (rc < 0) { lg2::error("Populating fru id:({FRUID}) areas failed", "FRUID", fruid); return cleanupError(fruFilePointer, fruAreaVec); } lg2::debug("Populated FRU areas, file name: {FILE}", "FILE", fruFilename); for (const auto& iter : fruAreaVec) { lg2::debug("fru id: {FRUID}", "FRUID", iter->getFruID()); lg2::debug("area name: {AREA}", "AREA", iter->getName()); lg2::debug("type: {TYPE}", "TYPE", iter->getType()); lg2::debug("length: {LEN}", "LEN", iter->getLength()); } // If the vector is populated with everything, then go ahead and update the // inventory. if (!(fruAreaVec.empty())) { lg2::debug("fruAreaVec size: {SIZE}", "SIZE", fruAreaVec.size()); rc = updateInventory(fruAreaVec, bus); if (rc < 0) { lg2::error("Error updating inventory."); } } // we are done with all that we wanted to do. This will do the job of // calling any destructors too. fruAreaVec.clear(); return rc; }