/* * Copyright (c) 2018 Intel Corporation. * Copyright (c) 2018-present Facebook. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "xyz/openbmc_project/Common/error.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SIZE_IANA_ID 3 namespace ipmi { using namespace phosphor::logging; void getSelectorPosition(size_t& position); static void registerOEMFunctions() __attribute__((constructor)); sdbusplus::bus_t dbus(ipmid_get_sd_bus_connection()); // from ipmid/api.h static constexpr size_t maxFRUStringLength = 0x3F; constexpr uint8_t cmdSetSystemGuid = 0xEF; constexpr uint8_t cmdSetQDimmInfo = 0x12; constexpr uint8_t cmdGetQDimmInfo = 0x13; int plat_udbg_get_post_desc(uint8_t, uint8_t*, uint8_t, uint8_t*, uint8_t*, uint8_t*); int plat_udbg_get_gpio_desc(uint8_t, uint8_t*, uint8_t*, uint8_t*, uint8_t*, uint8_t*); ipmi_ret_t plat_udbg_get_frame_data(uint8_t, uint8_t, uint8_t*, uint8_t*, uint8_t*); ipmi_ret_t plat_udbg_control_panel(uint8_t, uint8_t, uint8_t, uint8_t*, uint8_t*); int sendMeCmd(uint8_t, uint8_t, std::vector&, std::vector&); int sendBicCmd(uint8_t, uint8_t, uint8_t, std::vector&, std::vector&); nlohmann::json oemData __attribute__((init_priority(101))); static constexpr size_t GUID_SIZE = 16; // TODO Make offset and location runtime configurable to ensure we // can make each define their own locations. static constexpr off_t OFFSET_SYS_GUID = 0x17F0; static constexpr const char* FRU_EEPROM = "/sys/bus/i2c/devices/6-0054/eeprom"; enum class LanParam : uint8_t { INPROGRESS = 0, AUTHSUPPORT = 1, AUTHENABLES = 2, IP = 3, IPSRC = 4, MAC = 5, SUBNET = 6, GATEWAY = 12, VLAN = 20, CIPHER_SUITE_COUNT = 22, CIPHER_SUITE_ENTRIES = 23, IPV6 = 59, }; namespace network { constexpr auto ROOT = "/xyz/openbmc_project/network"; constexpr auto SERVICE = "xyz.openbmc_project.Network"; constexpr auto IPV4_TYPE = "ipv4"; constexpr auto IPV6_TYPE = "ipv6"; constexpr auto IPV4_PREFIX = "169.254"; constexpr auto IPV6_PREFIX = "fe80"; constexpr auto IP_INTERFACE = "xyz.openbmc_project.Network.IP"; constexpr auto MAC_INTERFACE = "xyz.openbmc_project.Network.MACAddress"; constexpr auto IPV4_PROTOCOL = "xyz.openbmc_project.Network.IP.Protocol.IPv4"; constexpr auto IPV6_PROTOCOL = "xyz.openbmc_project.Network.IP.Protocol.IPv6"; bool isLinkLocalIP(const std::string& address) { return address.find(IPV4_PREFIX) == 0 || address.find(IPV6_PREFIX) == 0; } DbusObjectInfo getIPObject(sdbusplus::bus_t& bus, const std::string& interface, const std::string& serviceRoot, const std::string& protocol, const std::string& ethdev) { auto objectTree = getAllDbusObjects(bus, serviceRoot, interface, ethdev); if (objectTree.empty()) { log("No Object has implemented the IP interface", entry("INTERFACE=%s", interface.c_str())); } DbusObjectInfo objectInfo; for (auto& object : objectTree) { auto variant = ipmi::getDbusProperty(bus, object.second.begin()->first, object.first, IP_INTERFACE, "Type"); if (std::get(variant) != protocol) { continue; } variant = ipmi::getDbusProperty(bus, object.second.begin()->first, object.first, IP_INTERFACE, "Address"); objectInfo = std::make_pair(object.first, object.second.begin()->first); // if LinkLocalIP found look for Non-LinkLocalIP if (isLinkLocalIP(std::get(variant))) { continue; } else { break; } } return objectInfo; } } // namespace network namespace boot { using BootSource = sdbusplus::xyz::openbmc_project::Control::Boot::server::Source::Sources; using BootMode = sdbusplus::xyz::openbmc_project::Control::Boot::server::Mode::Modes; using BootType = sdbusplus::xyz::openbmc_project::Control::Boot::server::Type::Types; using IpmiValue = uint8_t; std::map sourceIpmiToDbus = { {0x0f, BootSource::Default}, {0x00, BootSource::RemovableMedia}, {0x01, BootSource::Network}, {0x02, BootSource::Disk}, {0x03, BootSource::ExternalMedia}, {0x09, BootSource::Network}}; std::map modeIpmiToDbus = {{0x04, BootMode::Setup}, {0x00, BootMode::Regular}}; std::map typeIpmiToDbus = {{0x00, BootType::Legacy}, {0x01, BootType::EFI}}; std::map, IpmiValue> sourceDbusToIpmi = { {BootSource::Default, 0x0f}, {BootSource::RemovableMedia, 0x00}, {BootSource::Network, 0x01}, {BootSource::Disk, 0x02}, {BootSource::ExternalMedia, 0x03}}; std::map, IpmiValue> modeDbusToIpmi = { {BootMode::Setup, 0x04}, {BootMode::Regular, 0x00}}; std::map, IpmiValue> typeDbusToIpmi = { {BootType::Legacy, 0x00}, {BootType::EFI, 0x01}}; static constexpr auto bootEnableIntf = "xyz.openbmc_project.Object.Enable"; static constexpr auto bootModeIntf = "xyz.openbmc_project.Control.Boot.Mode"; static constexpr auto bootSourceIntf = "xyz.openbmc_project.Control.Boot.Source"; static constexpr auto bootTypeIntf = "xyz.openbmc_project.Control.Boot.Type"; static constexpr auto bootSourceProp = "BootSource"; static constexpr auto bootModeProp = "BootMode"; static constexpr auto bootTypeProp = "BootType"; static constexpr auto bootEnableProp = "Enabled"; std::tuple objPath(size_t id) { std::string hostName = "host" + std::to_string(id); std::string bootObjPath = "/xyz/openbmc_project/control/" + hostName + "/boot"; return std::make_tuple(std::move(bootObjPath), std::move(hostName)); } } // namespace boot //---------------------------------------------------------------------- // Helper functions for storing oem data //---------------------------------------------------------------------- void flushOemData() { std::ofstream file(JSON_OEM_DATA_FILE); file << oemData; file.close(); return; } std::string bytesToStr(uint8_t* byte, int len) { std::stringstream ss; int i; ss << std::hex; for (i = 0; i < len; i++) { ss << std::setw(2) << std::setfill('0') << (int)byte[i]; } return ss.str(); } int strToBytes(std::string& str, uint8_t* data) { std::string sstr; size_t i; for (i = 0; i < (str.length()) / 2; i++) { sstr = str.substr(i * 2, 2); data[i] = (uint8_t)std::strtol(sstr.c_str(), NULL, 16); } return i; } int readDimmType(std::string& data, uint8_t param) { nlohmann::json dimmObj; /* Get dimm type names stored in json file */ std::ifstream file(JSON_DIMM_TYPE_FILE); if (file) { file >> dimmObj; file.close(); } else { phosphor::logging::log( "DIMM type names file not found", phosphor::logging::entry("DIMM_TYPE_FILE=%s", JSON_DIMM_TYPE_FILE)); return -1; } std::string dimmKey = "dimm_type" + std::to_string(param); auto obj = dimmObj[dimmKey]["short_name"]; data = obj; return 0; } ipmi_ret_t getNetworkData(uint8_t lan_param, char* data) { ipmi_ret_t rc = IPMI_CC_OK; sdbusplus::bus_t bus(ipmid_get_sd_bus_connection()); const std::string ethdevice = "eth0"; switch (static_cast(lan_param)) { case LanParam::IP: { std::string ipaddress; auto ipObjectInfo = ipmi::network::getIPObject( bus, ipmi::network::IP_INTERFACE, ipmi::network::ROOT, ipmi::network::IPV4_PROTOCOL, ethdevice); auto properties = ipmi::getAllDbusProperties( bus, ipObjectInfo.second, ipObjectInfo.first, ipmi::network::IP_INTERFACE); ipaddress = std::get(properties["Address"]); std::strcpy(data, ipaddress.c_str()); } break; case LanParam::IPV6: { std::string ipaddress; auto ipObjectInfo = ipmi::network::getIPObject( bus, ipmi::network::IP_INTERFACE, ipmi::network::ROOT, ipmi::network::IPV6_PROTOCOL, ethdevice); auto properties = ipmi::getAllDbusProperties( bus, ipObjectInfo.second, ipObjectInfo.first, ipmi::network::IP_INTERFACE); ipaddress = std::get(properties["Address"]); std::strcpy(data, ipaddress.c_str()); } break; case LanParam::MAC: { std::string macAddress; auto macObjectInfo = ipmi::getDbusObject(bus, ipmi::network::MAC_INTERFACE, ipmi::network::ROOT, ethdevice); auto variant = ipmi::getDbusProperty( bus, macObjectInfo.second, macObjectInfo.first, ipmi::network::MAC_INTERFACE, "MACAddress"); macAddress = std::get(variant); sscanf(macAddress.c_str(), ipmi::network::MAC_ADDRESS_FORMAT, (data), (data + 1), (data + 2), (data + 3), (data + 4), (data + 5)); std::strcpy(data, macAddress.c_str()); } break; default: rc = IPMI_CC_PARM_OUT_OF_RANGE; } return rc; } bool isMultiHostPlatform() { bool platform; if (hostInstances == "0") { platform = false; } else { platform = true; } return platform; } // return code: 0 successful int8_t getFruData(std::string& data, std::string& name) { size_t pos; static constexpr const auto depth = 0; std::vector paths; std::string machinePath; std::string baseBoard = "Baseboard"; bool platform = isMultiHostPlatform(); if (platform == true) { getSelectorPosition(pos); } sd_bus* bus = NULL; int ret = sd_bus_default_system(&bus); if (ret < 0) { phosphor::logging::log( "Failed to connect to system bus", phosphor::logging::entry("ERRNO=0x%X", -ret)); sd_bus_unref(bus); return -1; } sdbusplus::bus_t dbus(bus); auto mapperCall = dbus.new_method_call("xyz.openbmc_project.ObjectMapper", "/xyz/openbmc_project/object_mapper", "xyz.openbmc_project.ObjectMapper", "GetSubTreePaths"); static constexpr std::array interface = { "xyz.openbmc_project.Inventory.Decorator.Asset"}; mapperCall.append("/xyz/openbmc_project/inventory/", depth, interface); try { auto reply = dbus.call(mapperCall); reply.read(paths); } catch (sdbusplus::exception_t& e) { phosphor::logging::log(e.what()); return -1; } for (const auto& path : paths) { if (platform == true) { if (pos == BMC_POS) { machinePath = baseBoard; } else { machinePath = "_" + std::to_string(pos); } } else { machinePath = baseBoard; } auto found = path.find(machinePath); if (found == std::string::npos) { continue; } std::shared_ptr dbus = getSdBus(); std::string service = getService( *dbus, "xyz.openbmc_project.Inventory.Decorator.Asset", path); auto Value = ipmi::getDbusProperty( *dbus, service, path, "xyz.openbmc_project.Inventory.Decorator.Asset", name); data = std::get(Value); return 0; } return -1; } int8_t sysConfig(std::vector& data, size_t pos) { nlohmann::json sysObj; std::string dimmInfo = KEY_Q_DIMM_INFO + std::to_string(pos); std::string result, typeName; uint8_t res[MAX_BUF]; /* Get sysConfig data stored in json file */ std::ifstream file(JSON_OEM_DATA_FILE); if (file) { file >> sysObj; file.close(); } else { phosphor::logging::log( "oemData file not found", phosphor::logging::entry("OEM_DATA_FILE=%s", JSON_OEM_DATA_FILE)); return -1; } if (sysObj.find(dimmInfo) == sysObj.end()) { phosphor::logging::log( "sysconfig key not available", phosphor::logging::entry("SYS_JSON_KEY=%s", dimmInfo.c_str())); return -1; } /* Get dimm type names stored in json file */ nlohmann::json dimmObj; std::ifstream dimmFile(JSON_DIMM_TYPE_FILE); if (file) { dimmFile >> dimmObj; dimmFile.close(); } else { phosphor::logging::log( "DIMM type names file not found", phosphor::logging::entry("DIMM_TYPE_FILE=%s", JSON_DIMM_TYPE_FILE)); return -1; } std::vector a; for (auto& j : dimmObj.items()) { std::string name = j.key(); a.push_back(name); } uint8_t len = a.size(); for (uint8_t ii = 0; ii < len; ii++) { std::string indKey = std::to_string(ii); std::string speedSize = sysObj[dimmInfo][indKey][DIMM_SPEED]; strToBytes(speedSize, res); auto speed = (res[1] << 8 | res[0]); size_t dimmSize = ((res[3] << 8 | res[2]) / 1000); if (dimmSize == 0) { std::cerr << "Dimm information not available for slot_" + std::to_string(ii) << std::endl; continue; } std::string type = sysObj[dimmInfo][indKey][DIMM_TYPE]; std::string dualInlineMem = sysObj[dimmInfo][indKey][KEY_DIMM_TYPE]; strToBytes(type, res); size_t dimmType = res[0]; if (dimmVenMap.find(dimmType) == dimmVenMap.end()) { typeName = "unknown"; } else { typeName = dimmVenMap[dimmType]; } result = dualInlineMem + "/" + typeName + "/" + std::to_string(speed) + "MHz" + "/" + std::to_string(dimmSize) + "GB"; data.push_back(result); } return 0; } int8_t procInfo(std::string& result, size_t pos) { std::vector data; uint8_t res[MAX_BUF]; std::string procIndex = "00"; nlohmann::json proObj; std::string procInfo = KEY_Q_PROC_INFO + std::to_string(pos); /* Get processor data stored in json file */ std::ifstream file(JSON_OEM_DATA_FILE); if (file) { file >> proObj; file.close(); } else { phosphor::logging::log( "oemData file not found", phosphor::logging::entry("OEM_DATA_FILE=%s", JSON_OEM_DATA_FILE)); return -1; } if (proObj.find(procInfo) == proObj.end()) { phosphor::logging::log( "processor info key not available", phosphor::logging::entry("PROC_JSON_KEY=%s", procInfo.c_str())); return -1; } std::string procName = proObj[procInfo][procIndex][KEY_PROC_NAME]; std::string basicInfo = proObj[procInfo][procIndex][KEY_BASIC_INFO]; // Processor Product Name strToBytes(procName, res); data.assign(reinterpret_cast(&res), reinterpret_cast(&res) + sizeof(res)); std::string s(data.begin(), data.end()); std::regex regex(" "); std::vector productName( std::sregex_token_iterator(s.begin(), s.end(), regex, -1), std::sregex_token_iterator()); // Processor core and frequency strToBytes(basicInfo, res); uint16_t coreNum = res[0]; double procFrequency = (float)(res[4] << 8 | res[3]) / 1000; result = "CPU:" + productName[2] + "/" + std::to_string(procFrequency) + "GHz" + "/" + std::to_string(coreNum) + "c"; return 0; } typedef struct { uint8_t cur_power_state; uint8_t last_power_event; uint8_t misc_power_state; uint8_t front_panel_button_cap_status; } ipmi_get_chassis_status_t; //---------------------------------------------------------------------- // Get Debug Frame Info //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetFrameInfo(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t) { uint8_t* req = reinterpret_cast(request); uint8_t* res = reinterpret_cast(response); uint8_t num_frames = 3; std::memcpy(res, req, SIZE_IANA_ID); // IANA ID res[SIZE_IANA_ID] = num_frames; *data_len = SIZE_IANA_ID + 1; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Debug Updated Frames //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetUpdFrames(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t) { uint8_t* req = reinterpret_cast(request); uint8_t* res = reinterpret_cast(response); uint8_t num_updates = 3; *data_len = 4; std::memcpy(res, req, SIZE_IANA_ID); // IANA ID res[SIZE_IANA_ID] = num_updates; *data_len = SIZE_IANA_ID + num_updates + 1; res[SIZE_IANA_ID + 1] = 1; // info page update res[SIZE_IANA_ID + 2] = 2; // cri sel update res[SIZE_IANA_ID + 3] = 3; // cri sensor update return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Debug POST Description //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetPostDesc(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t) { uint8_t* req = reinterpret_cast(request); uint8_t* res = reinterpret_cast(response); uint8_t index = 0; uint8_t next = 0; uint8_t end = 0; uint8_t phase = 0; uint8_t descLen = 0; int ret; index = req[3]; phase = req[4]; ret = plat_udbg_get_post_desc(index, &next, phase, &end, &descLen, &res[8]); if (ret) { memcpy(res, req, SIZE_IANA_ID); // IANA ID *data_len = SIZE_IANA_ID; return IPMI_CC_UNSPECIFIED_ERROR; } memcpy(res, req, SIZE_IANA_ID); // IANA ID res[3] = index; res[4] = next; res[5] = phase; res[6] = end; res[7] = descLen; *data_len = SIZE_IANA_ID + 5 + descLen; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Debug GPIO Description //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetGpioDesc(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t) { uint8_t* req = reinterpret_cast(request); uint8_t* res = reinterpret_cast(response); uint8_t index = 0; uint8_t next = 0; uint8_t level = 0; uint8_t pinDef = 0; uint8_t descLen = 0; int ret; index = req[3]; ret = plat_udbg_get_gpio_desc(index, &next, &level, &pinDef, &descLen, &res[8]); if (ret) { memcpy(res, req, SIZE_IANA_ID); // IANA ID *data_len = SIZE_IANA_ID; return IPMI_CC_UNSPECIFIED_ERROR; } memcpy(res, req, SIZE_IANA_ID); // IANA ID res[3] = index; res[4] = next; res[5] = level; res[6] = pinDef; res[7] = descLen; *data_len = SIZE_IANA_ID + 5 + descLen; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Debug Frame Data //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetFrameData(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t) { uint8_t* req = reinterpret_cast(request); uint8_t* res = reinterpret_cast(response); uint8_t frame; uint8_t page; uint8_t next; uint8_t count; int ret; frame = req[3]; page = req[4]; ret = plat_udbg_get_frame_data(frame, page, &next, &count, &res[7]); if (ret) { memcpy(res, req, SIZE_IANA_ID); // IANA ID *data_len = SIZE_IANA_ID; return IPMI_CC_UNSPECIFIED_ERROR; } memcpy(res, req, SIZE_IANA_ID); // IANA ID res[3] = frame; res[4] = page; res[5] = next; res[6] = count; *data_len = SIZE_IANA_ID + 4 + count; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Debug Control Panel //---------------------------------------------------------------------- ipmi_ret_t ipmiOemDbgGetCtrlPanel(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t) { uint8_t* req = reinterpret_cast(request); uint8_t* res = reinterpret_cast(response); uint8_t panel; uint8_t operation; uint8_t item; uint8_t count; ipmi_ret_t ret; panel = req[3]; operation = req[4]; item = req[5]; ret = plat_udbg_control_panel(panel, operation, item, &count, &res[3]); std::memcpy(res, req, SIZE_IANA_ID); // IANA ID *data_len = SIZE_IANA_ID + count; return ret; } //---------------------------------------------------------------------- // Set Dimm Info (CMD_OEM_SET_DIMM_INFO) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetDimmInfo(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t, ipmi_data_len_t data_len, ipmi_context_t) { uint8_t* req = reinterpret_cast(request); uint8_t index = req[0]; uint8_t type = req[1]; uint16_t speed; uint32_t size; memcpy(&speed, &req[2], 2); memcpy(&size, &req[4], 4); std::stringstream ss; ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)index; oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_INDEX] = index; oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_TYPE] = type; oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_SPEED] = speed; oemData[KEY_SYS_CONFIG][ss.str()][KEY_DIMM_SIZE] = size; flushOemData(); *data_len = 0; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Board ID (CMD_OEM_GET_BOARD_ID) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemGetBoardID(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t, ipmi_response_t, ipmi_data_len_t data_len, ipmi_context_t) { /* TODO: Needs to implement this after GPIO implementation */ *data_len = 0; return IPMI_CC_OK; } /* Helper functions to set boot order */ void setBootOrder(std::string bootObjPath, uint8_t* data, std::string bootOrderKey) { std::shared_ptr dbus = getSdBus(); // SETTING BOOT MODE PROPERTY uint8_t bootModeBit = data[0] & 0x04; auto bootValue = ipmi::boot::modeIpmiToDbus.at(bootModeBit); std::string bootOption = sdbusplus::message::convert_to_string(bootValue); std::string service = getService(*dbus, ipmi::boot::bootModeIntf, bootObjPath); setDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootModeIntf, ipmi::boot::bootModeProp, bootOption); // SETTING BOOT SOURCE PROPERTY auto bootOrder = ipmi::boot::sourceIpmiToDbus.at(data[1]); std::string bootSource = sdbusplus::message::convert_to_string(bootOrder); service = getService(*dbus, ipmi::boot::bootSourceIntf, bootObjPath); setDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootSourceIntf, ipmi::boot::bootSourceProp, bootSource); // SETTING BOOT TYPE PROPERTY uint8_t bootTypeBit = data[0] & 0x01; auto bootTypeVal = ipmi::boot::typeIpmiToDbus.at(bootTypeBit); std::string bootType = sdbusplus::message::convert_to_string(bootTypeVal); service = getService(*dbus, ipmi::boot::bootTypeIntf, bootObjPath); setDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootTypeIntf, ipmi::boot::bootTypeProp, bootType); // Set the valid bit to boot enabled property service = getService(*dbus, ipmi::boot::bootEnableIntf, bootObjPath); setDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootEnableIntf, ipmi::boot::bootEnableProp, (data[0] & BOOT_MODE_BOOT_FLAG) ? true : false); nlohmann::json bootMode; uint8_t mode = data[0]; int i; bootMode["UEFI"] = (mode & BOOT_MODE_UEFI ? true : false); bootMode["CMOS_CLR"] = (mode & BOOT_MODE_CMOS_CLR ? true : false); bootMode["FORCE_BOOT"] = (mode & BOOT_MODE_FORCE_BOOT ? true : false); bootMode["BOOT_FLAG"] = (mode & BOOT_MODE_BOOT_FLAG ? true : false); oemData[bootOrderKey][KEY_BOOT_MODE] = bootMode; /* Initialize boot sequence array */ oemData[bootOrderKey][KEY_BOOT_SEQ] = {}; for (i = 1; i < SIZE_BOOT_ORDER; i++) { if (data[i] >= BOOT_SEQ_ARRAY_SIZE) oemData[bootOrderKey][KEY_BOOT_SEQ][i - 1] = "NA"; else oemData[bootOrderKey][KEY_BOOT_SEQ][i - 1] = bootSeq[data[i]]; } flushOemData(); } //---------------------------------------------------------------------- // Set Boot Order (CMD_OEM_SET_BOOT_ORDER) //---------------------------------------------------------------------- ipmi::RspType> ipmiOemSetBootOrder(ipmi::Context::ptr ctx, std::vector data) { uint8_t bootSeq[SIZE_BOOT_ORDER]; size_t len = data.size(); if (len != SIZE_BOOT_ORDER) { phosphor::logging::log( "Invalid Boot order length received"); return ipmi::responseReqDataLenInvalid(); } std::copy(std::begin(data), std::end(data), bootSeq); std::optional hostId = findHost(ctx->hostIdx); if (!hostId) { phosphor::logging::log( "Invalid Host Id received"); return ipmi::responseInvalidCommand(); } auto [bootObjPath, hostName] = ipmi::boot::objPath(*hostId); setBootOrder(bootObjPath, bootSeq, hostName); return ipmi::responseSuccess(data); } //---------------------------------------------------------------------- // Get Boot Order (CMD_OEM_GET_BOOT_ORDER) //---------------------------------------------------------------------- ipmi::RspType ipmiOemGetBootOrder(ipmi::Context::ptr ctx) { uint8_t bootSeq[SIZE_BOOT_ORDER]; uint8_t mode = 0; std::optional hostId = findHost(ctx->hostIdx); if (!hostId) { phosphor::logging::log( "Invalid Host Id received"); return ipmi::responseInvalidCommand(); } auto [bootObjPath, hostName] = ipmi::boot::objPath(*hostId); std::shared_ptr dbus = getSdBus(); // GETTING PROPERTY OF MODE INTERFACE std::string service = getService(*dbus, ipmi::boot::bootModeIntf, bootObjPath); Value variant = getDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootModeIntf, ipmi::boot::bootModeProp); auto bootMode = sdbusplus::message::convert_from_string( std::get(variant)); uint8_t bootOption = ipmi::boot::modeDbusToIpmi.at(bootMode); // GETTING PROPERTY OF TYPE INTERFACE service = getService(*dbus, ipmi::boot::bootTypeIntf, bootObjPath); variant = getDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootTypeIntf, ipmi::boot::bootTypeProp); auto bootType = sdbusplus::message::convert_from_string( std::get(variant)); // Get the valid bit from boot enabled property service = getService(*dbus, ipmi::boot::bootEnableIntf, bootObjPath); variant = getDbusProperty(*dbus, service, bootObjPath, ipmi::boot::bootEnableIntf, ipmi::boot::bootEnableProp); bool validFlag = std::get(variant); uint8_t bootTypeVal = ipmi::boot::typeDbusToIpmi.at(bootType); uint8_t bootVal = bootOption | bootTypeVal; if (validFlag) { bootVal |= BOOT_MODE_BOOT_FLAG; } if (oemData.find(hostName) == oemData.end()) { /* Return default boot order 0100090203ff */ uint8_t defaultBoot[SIZE_BOOT_ORDER] = { BOOT_MODE_UEFI, static_cast(bootMap["USB_DEV"]), static_cast(bootMap["NET_IPV6"]), static_cast(bootMap["SATA_HDD"]), static_cast(bootMap["SATA_CD"]), 0xff}; memcpy(bootSeq, defaultBoot, SIZE_BOOT_ORDER); phosphor::logging::log( "Set default boot order"); setBootOrder(bootObjPath, defaultBoot, hostName); } else { nlohmann::json bootMode = oemData[hostName][KEY_BOOT_MODE]; if (bootMode["CMOS_CLR"]) bootVal |= BOOT_MODE_CMOS_CLR; bootSeq[0] = mode; for (int i = 1; i < SIZE_BOOT_ORDER; i++) { std::string seqStr = oemData[hostName][KEY_BOOT_SEQ][i - 1]; if (bootMap.find(seqStr) != bootMap.end()) bootSeq[i] = bootMap[seqStr]; else bootSeq[i] = 0xff; } } return ipmi::responseSuccess(bootVal, bootSeq[1], bootSeq[2], bootSeq[3], bootSeq[4], bootSeq[5]); } // Set Machine Config Info (CMD_OEM_SET_MACHINE_CONFIG_INFO) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetMachineCfgInfo(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t, ipmi_data_len_t data_len, ipmi_context_t) { machineConfigInfo_t* req = reinterpret_cast(request); uint8_t len = *data_len; *data_len = 0; if (len < sizeof(machineConfigInfo_t)) { phosphor::logging::log( "Invalid machine configuration length received"); return IPMI_CC_REQ_DATA_LEN_INVALID; } if (req->chassis_type >= sizeof(chassisType) / sizeof(uint8_t*)) oemData[KEY_MC_CONFIG][KEY_MC_CHAS_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_CHAS_TYPE] = chassisType[req->chassis_type]; if (req->mb_type >= sizeof(mbType) / sizeof(uint8_t*)) oemData[KEY_MC_CONFIG][KEY_MC_MB_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_MB_TYPE] = mbType[req->mb_type]; oemData[KEY_MC_CONFIG][KEY_MC_PROC_CNT] = req->proc_cnt; oemData[KEY_MC_CONFIG][KEY_MC_MEM_CNT] = req->mem_cnt; oemData[KEY_MC_CONFIG][KEY_MC_HDD35_CNT] = req->hdd35_cnt; oemData[KEY_MC_CONFIG][KEY_MC_HDD25_CNT] = req->hdd25_cnt; if (req->riser_type >= sizeof(riserType) / sizeof(uint8_t*)) oemData[KEY_MC_CONFIG][KEY_MC_RSR_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_RSR_TYPE] = riserType[req->riser_type]; oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC] = {}; int i = 0; if (req->pcie_card_loc & BIT_0) oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT1"; if (req->pcie_card_loc & BIT_1) oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT2"; if (req->pcie_card_loc & BIT_2) oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT3"; if (req->pcie_card_loc & BIT_3) oemData[KEY_MC_CONFIG][KEY_MC_PCIE_LOC][i++] = "SLOT4"; if (req->slot1_pcie_type >= sizeof(pcieType) / sizeof(uint8_t*)) oemData[KEY_MC_CONFIG][KEY_MC_SLOT1_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_SLOT1_TYPE] = pcieType[req->slot1_pcie_type]; if (req->slot2_pcie_type >= sizeof(pcieType) / sizeof(uint8_t*)) oemData[KEY_MC_CONFIG][KEY_MC_SLOT2_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_SLOT2_TYPE] = pcieType[req->slot2_pcie_type]; if (req->slot3_pcie_type >= sizeof(pcieType) / sizeof(uint8_t*)) oemData[KEY_MC_CONFIG][KEY_MC_SLOT3_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_SLOT3_TYPE] = pcieType[req->slot3_pcie_type]; if (req->slot4_pcie_type >= sizeof(pcieType) / sizeof(uint8_t*)) oemData[KEY_MC_CONFIG][KEY_MC_SLOT4_TYPE] = "UNKNOWN"; else oemData[KEY_MC_CONFIG][KEY_MC_SLOT4_TYPE] = pcieType[req->slot4_pcie_type]; oemData[KEY_MC_CONFIG][KEY_MC_AEP_CNT] = req->aep_mem_cnt; flushOemData(); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set POST start (CMD_OEM_SET_POST_START) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetPostStart(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t, ipmi_response_t, ipmi_data_len_t data_len, ipmi_context_t) { phosphor::logging::log("POST Start Event"); /* Do nothing, return success */ *data_len = 0; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set POST End (CMD_OEM_SET_POST_END) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetPostEnd(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t, ipmi_response_t, ipmi_data_len_t data_len, ipmi_context_t) { struct timespec ts; phosphor::logging::log("POST End Event"); *data_len = 0; // Timestamp post end time. clock_gettime(CLOCK_REALTIME, &ts); oemData[KEY_TS_SLED] = ts.tv_sec; flushOemData(); // Sync time with system // TODO: Add code for syncing time return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set PPIN Info (CMD_OEM_SET_PPIN_INFO) //---------------------------------------------------------------------- // Inform BMC about PPIN data of 8 bytes for each CPU // // Request: // Byte 1:8 – CPU0 PPIN data // Optional: // Byte 9:16 – CPU1 PPIN data // // Response: // Byte 1 – Completion Code ipmi_ret_t ipmiOemSetPPINInfo(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t, ipmi_data_len_t data_len, ipmi_context_t) { uint8_t* req = reinterpret_cast(request); std::string ppinStr; int len; if (*data_len > SIZE_CPU_PPIN * 2) len = SIZE_CPU_PPIN * 2; else len = *data_len; *data_len = 0; ppinStr = bytesToStr(req, len); oemData[KEY_PPIN_INFO] = ppinStr.c_str(); flushOemData(); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set ADR Trigger (CMD_OEM_SET_ADR_TRIGGER) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetAdrTrigger(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t, ipmi_response_t, ipmi_data_len_t data_len, ipmi_context_t) { /* Do nothing, return success */ *data_len = 0; return IPMI_CC_OK; } // Helper function to set guid at offset in EEPROM [[maybe_unused]] static int setGUID(off_t offset, uint8_t* guid) { int fd = -1; ssize_t len; int ret = 0; errno = 0; // Check if file is present if (access(FRU_EEPROM, F_OK) == -1) { std::cerr << "Unable to access: " << FRU_EEPROM << std::endl; return errno; } // Open the file fd = open(FRU_EEPROM, O_WRONLY); if (fd == -1) { std::cerr << "Unable to open: " << FRU_EEPROM << std::endl; return errno; } // seek to the offset lseek(fd, offset, SEEK_SET); // Write bytes to location len = write(fd, guid, GUID_SIZE); if (len != GUID_SIZE) { phosphor::logging::log( "GUID write data to EEPROM failed"); ret = errno; } close(fd); return ret; } //---------------------------------------------------------------------- // Set System GUID (CMD_OEM_SET_SYSTEM_GUID) //---------------------------------------------------------------------- #if BIC_ENABLED ipmi::RspType<> ipmiOemSetSystemGuid(ipmi::Context::ptr ctx, std::vector reqData) { std::vector respData; if (reqData.size() != GUID_SIZE) // 16bytes { return ipmi::responseReqDataLenInvalid(); } uint8_t bicAddr = (uint8_t)ctx->hostIdx << 2; if (sendBicCmd(ctx->netFn, ctx->cmd, bicAddr, reqData, respData)) return ipmi::responseUnspecifiedError(); return ipmi::responseSuccess(); } #else ipmi_ret_t ipmiOemSetSystemGuid(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t, ipmi_data_len_t data_len, ipmi_context_t) { uint8_t* req = reinterpret_cast(request); if (*data_len != GUID_SIZE) // 16bytes { *data_len = 0; return IPMI_CC_REQ_DATA_LEN_INVALID; } *data_len = 0; if (setGUID(OFFSET_SYS_GUID, req)) { return IPMI_CC_UNSPECIFIED_ERROR; } return IPMI_CC_OK; } #endif //---------------------------------------------------------------------- // Set Bios Flash Info (CMD_OEM_SET_BIOS_FLASH_INFO) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetBiosFlashInfo(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t, ipmi_response_t, ipmi_data_len_t data_len, ipmi_context_t) { /* Do nothing, return success */ *data_len = 0; return IPMI_CC_OK; } //---------------------------------------------------------------------- // Set PPR (CMD_OEM_SET_PPR) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemSetPpr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t, ipmi_data_len_t data_len, ipmi_context_t) { uint8_t* req = reinterpret_cast(request); uint8_t pprCnt, pprAct, pprIndex; uint8_t selParam = req[0]; uint8_t len = *data_len; std::stringstream ss; std::string str; *data_len = 0; switch (selParam) { case PPR_ACTION: if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) == oemData[KEY_PPR].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; pprCnt = oemData[KEY_PPR][KEY_PPR_ROW_COUNT]; if (pprCnt == 0) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; pprAct = req[1]; /* Check if ppr is enabled or disabled */ if (!(pprAct & 0x80)) pprAct = 0; oemData[KEY_PPR][KEY_PPR_ACTION] = pprAct; break; case PPR_ROW_COUNT: if (req[1] > 100) return IPMI_CC_PARM_OUT_OF_RANGE; oemData[KEY_PPR][KEY_PPR_ROW_COUNT] = req[1]; break; case PPR_ROW_ADDR: pprIndex = req[1]; if (pprIndex > 100) return IPMI_CC_PARM_OUT_OF_RANGE; if (len < PPR_ROW_ADDR_LEN + 1) { phosphor::logging::log( "Invalid PPR Row Address length received"); return IPMI_CC_REQ_DATA_LEN_INVALID; } ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)pprIndex; oemData[KEY_PPR][ss.str()][KEY_PPR_INDEX] = pprIndex; str = bytesToStr(&req[1], PPR_ROW_ADDR_LEN); oemData[KEY_PPR][ss.str()][KEY_PPR_ROW_ADDR] = str.c_str(); break; case PPR_HISTORY_DATA: pprIndex = req[1]; if (pprIndex > 100) return IPMI_CC_PARM_OUT_OF_RANGE; if (len < PPR_HST_DATA_LEN + 1) { phosphor::logging::log( "Invalid PPR history data length received"); return IPMI_CC_REQ_DATA_LEN_INVALID; } ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)pprIndex; oemData[KEY_PPR][ss.str()][KEY_PPR_INDEX] = pprIndex; str = bytesToStr(&req[1], PPR_HST_DATA_LEN); oemData[KEY_PPR][ss.str()][KEY_PPR_HST_DATA] = str.c_str(); break; default: return IPMI_CC_PARM_OUT_OF_RANGE; break; } flushOemData(); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get PPR (CMD_OEM_GET_PPR) //---------------------------------------------------------------------- ipmi_ret_t ipmiOemGetPpr(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t) { uint8_t* req = reinterpret_cast(request); uint8_t* res = reinterpret_cast(response); uint8_t pprCnt, pprIndex; uint8_t selParam = req[0]; std::stringstream ss; std::string str; /* Any failure will return zero length data */ *data_len = 0; switch (selParam) { case PPR_ACTION: res[0] = 0; *data_len = 1; if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) != oemData[KEY_PPR].end()) { pprCnt = oemData[KEY_PPR][KEY_PPR_ROW_COUNT]; if (pprCnt != 0) { if (oemData[KEY_PPR].find(KEY_PPR_ACTION) != oemData[KEY_PPR].end()) { res[0] = oemData[KEY_PPR][KEY_PPR_ACTION]; } } } break; case PPR_ROW_COUNT: res[0] = 0; *data_len = 1; if (oemData[KEY_PPR].find(KEY_PPR_ROW_COUNT) != oemData[KEY_PPR].end()) res[0] = oemData[KEY_PPR][KEY_PPR_ROW_COUNT]; break; case PPR_ROW_ADDR: pprIndex = req[1]; if (pprIndex > 100) return IPMI_CC_PARM_OUT_OF_RANGE; ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)pprIndex; if (oemData[KEY_PPR].find(ss.str()) == oemData[KEY_PPR].end()) return IPMI_CC_PARM_OUT_OF_RANGE; if (oemData[KEY_PPR][ss.str()].find(KEY_PPR_ROW_ADDR) == oemData[KEY_PPR][ss.str()].end()) return IPMI_CC_PARM_OUT_OF_RANGE; str = oemData[KEY_PPR][ss.str()][KEY_PPR_ROW_ADDR]; *data_len = strToBytes(str, res); break; case PPR_HISTORY_DATA: pprIndex = req[1]; if (pprIndex > 100) return IPMI_CC_PARM_OUT_OF_RANGE; ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)pprIndex; if (oemData[KEY_PPR].find(ss.str()) == oemData[KEY_PPR].end()) return IPMI_CC_PARM_OUT_OF_RANGE; if (oemData[KEY_PPR][ss.str()].find(KEY_PPR_HST_DATA) == oemData[KEY_PPR][ss.str()].end()) return IPMI_CC_PARM_OUT_OF_RANGE; str = oemData[KEY_PPR][ss.str()][KEY_PPR_HST_DATA]; *data_len = strToBytes(str, res); break; default: return IPMI_CC_PARM_OUT_OF_RANGE; break; } return IPMI_CC_OK; } /* FB OEM QC Commands */ //---------------------------------------------------------------------- // Set Proc Info (CMD_OEM_Q_SET_PROC_INFO) //---------------------------------------------------------------------- //"Request: // Byte 1:3 – Manufacturer ID – XXYYZZ h, LSB first // Byte 4 – Processor Index, 0 base // Byte 5 – Parameter Selector // Byte 6..N – Configuration parameter data (see below for Parameters // of Processor Information) // Response: // Byte 1 – Completion code // // Parameter#1: (Processor Product Name) // // Byte 1..48 –Product name(ASCII code) // Ex. Intel(R) Xeon(R) CPU E5-2685 v3 @ 2.60GHz // // Param#2: Processor Basic Information // Byte 1 – Core Number // Byte 2 – Thread Number (LSB) // Byte 3 – Thread Number (MSB) // Byte 4 – Processor frequency in MHz (LSB) // Byte 5 – Processor frequency in MHz (MSB) // Byte 6..7 – Revision // ipmi::RspType<> ipmiOemQSetProcInfo(ipmi::Context::ptr ctx, uint8_t, uint8_t, uint8_t, uint8_t procIndex, uint8_t paramSel, std::vector request) { uint8_t numParam = sizeof(cpuInfoKey) / sizeof(uint8_t*); std::stringstream ss; std::string str; uint8_t len = request.size(); auto hostId = findHost(ctx->hostIdx); if (!hostId) { phosphor::logging::log( "Invalid Host Id received"); return ipmi::responseInvalidCommand(); } std::string procInfo = KEY_Q_PROC_INFO + std::to_string(*hostId); /* check for requested data params */ if (len < 5 || paramSel < 1 || paramSel >= numParam) { phosphor::logging::log( "Invalid parameter received"); return ipmi::responseParmOutOfRange(); } ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)procIndex; oemData[procInfo][ss.str()][KEY_PROC_INDEX] = procIndex; str = bytesToStr(request.data(), len); oemData[procInfo][ss.str()][cpuInfoKey[paramSel]] = str.c_str(); flushOemData(); return ipmi::responseSuccess(); } //---------------------------------------------------------------------- // Get Proc Info (CMD_OEM_Q_GET_PROC_INFO) //---------------------------------------------------------------------- // Request: // Byte 1:3 – Manufacturer ID – XXYYZZ h, LSB first // Byte 4 – Processor Index, 0 base // Byte 5 – Parameter Selector // Response: // Byte 1 – Completion code // Byte 2..N – Configuration Parameter Data (see below for Parameters // of Processor Information) // // Parameter#1: (Processor Product Name) // // Byte 1..48 –Product name(ASCII code) // Ex. Intel(R) Xeon(R) CPU E5-2685 v3 @ 2.60GHz // // Param#2: Processor Basic Information // Byte 1 – Core Number // Byte 2 – Thread Number (LSB) // Byte 3 – Thread Number (MSB) // Byte 4 – Processor frequency in MHz (LSB) // Byte 5 – Processor frequency in MHz (MSB) // Byte 6..7 – Revision // ipmi::RspType> ipmiOemQGetProcInfo(ipmi::Context::ptr ctx, uint8_t, uint8_t, uint8_t, uint8_t procIndex, uint8_t paramSel) { uint8_t numParam = sizeof(cpuInfoKey) / sizeof(uint8_t*); std::stringstream ss; std::string str; uint8_t res[MAX_BUF]; auto hostId = findHost(ctx->hostIdx); if (!hostId) { phosphor::logging::log( "Invalid Host Id received"); return ipmi::responseInvalidCommand(); } std::string procInfo = KEY_Q_PROC_INFO + std::to_string(*hostId); if (paramSel < 1 || paramSel >= numParam) { phosphor::logging::log( "Invalid parameter received"); return ipmi::responseParmOutOfRange(); } ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)procIndex; if (oemData[procInfo].find(ss.str()) == oemData[procInfo].end()) return ipmi::responseCommandNotAvailable(); if (oemData[procInfo][ss.str()].find(cpuInfoKey[paramSel]) == oemData[procInfo][ss.str()].end()) return ipmi::responseCommandNotAvailable(); str = oemData[procInfo][ss.str()][cpuInfoKey[paramSel]]; int dataLen = strToBytes(str, res); std::vector response(&res[0], &res[dataLen]); return ipmi::responseSuccess(response); } //---------------------------------------------------------------------- // Set Dimm Info (CMD_OEM_Q_SET_DIMM_INFO) //---------------------------------------------------------------------- // Request: // Byte 1:3 – Manufacturer ID – XXYYZZh, LSB first // Byte 4 – DIMM Index, 0 base // Byte 5 – Parameter Selector // Byte 6..N – Configuration parameter data (see below for Parameters // of DIMM Information) // Response: // Byte 1 – Completion code // // Param#1 (DIMM Location): // Byte 1 – DIMM Present // Byte 1 – DIMM Present // 01h – Present // FFh – Not Present // Byte 2 – Node Number, 0 base // Byte 3 – Channel Number , 0 base // Byte 4 – DIMM Number , 0 base // // Param#2 (DIMM Type): // Byte 1 – DIMM Type // Bit [7:6] // For DDR3 // 00 – Normal Voltage (1.5V) // 01 – Ultra Low Voltage (1.25V) // 10 – Low Voltage (1.35V) // 11 – Reserved // For DDR4 // 00 – Reserved // 01 – Reserved // 10 – Reserved // 11 – Normal Voltage (1.2V) // Bit [5:0] // 0x00 – SDRAM // 0x01 – DDR-1 RAM // 0x02 – Rambus // 0x03 – DDR-2 RAM // 0x04 – FBDIMM // 0x05 – DDR-3 RAM // 0x06 – DDR-4 RAM // // Param#3 (DIMM Speed): // Byte 1..2 – DIMM speed in MHz, LSB // Byte 3..6 – DIMM size in Mbytes, LSB // // Param#4 (Module Part Number): // Byte 1..20 –Module Part Number (JEDEC Standard No. 21-C) // // Param#5 (Module Serial Number): // Byte 1..4 –Module Serial Number (JEDEC Standard No. 21-C) // // Param#6 (Module Manufacturer ID): // Byte 1 - Module Manufacturer ID, LSB // Byte 2 - Module Manufacturer ID, MSB // ipmi::RspType<> ipmiOemQSetDimmInfo(ipmi::Context::ptr ctx, uint8_t, uint8_t, uint8_t, uint8_t dimmIndex, uint8_t paramSel, std::vector request) { uint8_t numParam = sizeof(dimmInfoKey) / sizeof(uint8_t*); std::stringstream ss; std::string str; uint8_t len = request.size(); std::string dimmType; readDimmType(dimmType, dimmIndex); auto hostId = findHost(ctx->hostIdx); if (!hostId) { phosphor::logging::log( "Invalid Host Id received"); return ipmi::responseInvalidCommand(); } std::string dimmInfo = KEY_Q_DIMM_INFO + std::to_string(*hostId); if (len < 3 || paramSel < 1 || paramSel >= numParam) { phosphor::logging::log( "Invalid parameter received"); return ipmi::responseParmOutOfRange(); } ss << std::hex; ss << (int)dimmIndex; oemData[dimmInfo][ss.str()][KEY_DIMM_INDEX] = dimmIndex; oemData[dimmInfo][ss.str()][KEY_DIMM_TYPE] = dimmType; str = bytesToStr(request.data(), len); oemData[dimmInfo][ss.str()][dimmInfoKey[paramSel]] = str.c_str(); flushOemData(); return ipmi::responseSuccess(); } // Get Dimm Info (CMD_OEM_Q_GET_DIMM_INFO) //---------------------------------------------------------------------- // Request: // Byte 1:3 – Manufacturer ID – XXYYZZh, LSB first // Byte 4 – DIMM Index, 0 base // Byte 5 – Parameter Selector // Byte 6..N – Configuration parameter data (see below for Parameters // of DIMM Information) // Response: // Byte 1 – Completion code // Byte 2..N – Configuration Parameter Data (see Table_1213h Parameters // of DIMM Information) // // Param#1 (DIMM Location): // Byte 1 – DIMM Present // Byte 1 – DIMM Present // 01h – Present // FFh – Not Present // Byte 2 – Node Number, 0 base // Byte 3 – Channel Number , 0 base // Byte 4 – DIMM Number , 0 base // // Param#2 (DIMM Type): // Byte 1 – DIMM Type // Bit [7:6] // For DDR3 // 00 – Normal Voltage (1.5V) // 01 – Ultra Low Voltage (1.25V) // 10 – Low Voltage (1.35V) // 11 – Reserved // For DDR4 // 00 – Reserved // 01 – Reserved // 10 – Reserved // 11 – Normal Voltage (1.2V) // Bit [5:0] // 0x00 – SDRAM // 0x01 – DDR-1 RAM // 0x02 – Rambus // 0x03 – DDR-2 RAM // 0x04 – FBDIMM // 0x05 – DDR-3 RAM // 0x06 – DDR-4 RAM // // Param#3 (DIMM Speed): // Byte 1..2 – DIMM speed in MHz, LSB // Byte 3..6 – DIMM size in Mbytes, LSB // // Param#4 (Module Part Number): // Byte 1..20 –Module Part Number (JEDEC Standard No. 21-C) // // Param#5 (Module Serial Number): // Byte 1..4 –Module Serial Number (JEDEC Standard No. 21-C) // // Param#6 (Module Manufacturer ID): // Byte 1 - Module Manufacturer ID, LSB // Byte 2 - Module Manufacturer ID, MSB // ipmi::RspType> ipmiOemQGetDimmInfo(ipmi::Context::ptr ctx, uint8_t, uint8_t, uint8_t, uint8_t dimmIndex, uint8_t paramSel) { uint8_t numParam = sizeof(dimmInfoKey) / sizeof(uint8_t*); uint8_t res[MAX_BUF]; std::stringstream ss; std::string str; std::string dimmType; readDimmType(dimmType, dimmIndex); auto hostId = findHost(ctx->hostIdx); if (!hostId) { phosphor::logging::log( "Invalid Host Id received"); return ipmi::responseInvalidCommand(); } std::string dimmInfo = KEY_Q_DIMM_INFO + std::to_string(*hostId); if (paramSel < 1 || paramSel >= numParam) { phosphor::logging::log( "Invalid parameter received"); return ipmi::responseParmOutOfRange(); } ss << std::hex; ss << (int)dimmIndex; oemData[dimmInfo][ss.str()][KEY_DIMM_TYPE] = dimmType; if (oemData[dimmInfo].find(ss.str()) == oemData[dimmInfo].end()) return ipmi::responseCommandNotAvailable(); if (oemData[dimmInfo][ss.str()].find(dimmInfoKey[paramSel]) == oemData[dimmInfo][ss.str()].end()) return ipmi::responseCommandNotAvailable(); str = oemData[dimmInfo][ss.str()][dimmInfoKey[paramSel]]; int data_length = strToBytes(str, res); std::vector response(&res[0], &res[data_length]); return ipmi::responseSuccess(response); } //---------------------------------------------------------------------- // Set Drive Info (CMD_OEM_Q_SET_DRIVE_INFO) //---------------------------------------------------------------------- // BIOS issue this command to provide HDD information to BMC. // // BIOS just can get information by standard ATA / SMART command for // OB SATA controller. // BIOS can get // 1. Serial Number // 2. Model Name // 3. HDD FW Version // 4. HDD Capacity // 5. HDD WWN // // Use Get HDD info Param #5 to know the MAX HDD info index. // // Request: // Byte 1:3 – Quanta Manufacturer ID – 001C4Ch, LSB first // Byte 4 – // [7:4] Reserved // [3:0] HDD Controller Type // 0x00 – BIOS // 0x01 – Expander // 0x02 – LSI // Byte 5 – HDD Info Index, 0 base // Byte 6 – Parameter Selector // Byte 7..N – Configuration parameter data (see Table_1415h Parameters of HDD // Information) // // Response: // Byte 1 – Completion Code // // Param#0 (HDD Location): // Byte 1 – Controller // [7:3] Device Number // [2:0] Function Number // For Intel C610 series (Wellsburg) // D31:F2 (0xFA) – SATA control 1 // D31:F5 (0xFD) – SATA control 2 // D17:F4 (0x8C) – sSata control // Byte 2 – Port Number // Byte 3 – Location (0xFF: No HDD Present) // BIOS default set Byte 3 to 0xFF, if No HDD Present. And then skip send param // #1~4, #6, #7 to BMC (still send param #5) BIOS default set Byte 3 to 0, if // the HDD present. BMC or other people who know the HDD location has // responsibility for update Location info // // Param#1 (Serial Number): // Bytes 1..33: HDD Serial Number // // Param#2 (Model Name): // Byte 1..33 – HDD Model Name // // Param#3 (HDD FW Version): // Byte 1..17 –HDD FW version // // Param#4 (Capacity): // Byte 1..4 –HDD Block Size, LSB // Byte 5..12 - HDD Block Number, LSB // HDD Capacity = HDD Block size * HDD BLock number (Unit Byte) // // Param#5 (Max HDD Quantity): // Byte 1 - Max HDD Quantity // Max supported port numbers in this PCH // // Param#6 (HDD Type) // Byte 1 – HDD Type // 0h – Reserved // 1h – SAS // 2h – SATA // 3h – PCIE SSD (NVME) // // Param#7 (HDD WWN) // Data 1...8: HDD World Wide Name, LSB // ipmi_ret_t ipmiOemQSetDriveInfo(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t, ipmi_data_len_t data_len, ipmi_context_t) { qDriveInfo_t* req = reinterpret_cast(request); uint8_t numParam = sizeof(driveInfoKey) / sizeof(uint8_t*); uint8_t ctrlType = req->hddCtrlType & 0x0f; std::stringstream ss; std::string str; uint8_t len = *data_len; *data_len = 0; /* check for requested data params */ if (len < 6 || req->paramSel < 1 || req->paramSel >= numParam || ctrlType > 2) { phosphor::logging::log( "Invalid parameter received"); return IPMI_CC_PARM_OUT_OF_RANGE; } len = len - 6; // Get Actual data length ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)req->hddIndex; oemData[KEY_Q_DRIVE_INFO][KEY_HDD_CTRL_TYPE] = req->hddCtrlType; oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()][KEY_HDD_INDEX] = req->hddIndex; str = bytesToStr(req->data, len); oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()] [driveInfoKey[req->paramSel]] = str.c_str(); flushOemData(); return IPMI_CC_OK; } //---------------------------------------------------------------------- // Get Drive Info (CMD_OEM_Q_GET_DRIVE_INFO) //---------------------------------------------------------------------- // BMC needs to check HDD presented or not first. If NOT presented, return // completion code 0xD5. // // Request: // Byte 1:3 – Quanta Manufacturer ID – 001C4Ch, LSB first // Byte 4 – //[7:4] Reserved //[3:0] HDD Controller Type // 0x00 – BIOS // 0x01 – Expander // 0x02 – LSI // Byte 5 – HDD Index, 0 base // Byte 6 – Parameter Selector (See Above Set HDD Information) // Response: // Byte 1 – Completion Code // 0xD5 – Not support in current status (HDD Not Present) // Byte 2..N – Configuration parameter data (see Table_1415h Parameters of HDD // Information) // ipmi_ret_t ipmiOemQGetDriveInfo(ipmi_netfn_t, ipmi_cmd_t, ipmi_request_t request, ipmi_response_t response, ipmi_data_len_t data_len, ipmi_context_t) { qDriveInfo_t* req = reinterpret_cast(request); uint8_t numParam = sizeof(driveInfoKey) / sizeof(uint8_t*); uint8_t* res = reinterpret_cast(response); uint8_t ctrlType = req->hddCtrlType & 0x0f; std::stringstream ss; std::string str; *data_len = 0; /* check for requested data params */ if (req->paramSel < 1 || req->paramSel >= numParam || ctrlType > 2) { phosphor::logging::log( "Invalid parameter received"); return IPMI_CC_PARM_OUT_OF_RANGE; } if (oemData[KEY_Q_DRIVE_INFO].find(ctrlTypeKey[ctrlType]) == oemData[KEY_Q_DRIVE_INFO].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; ss << std::hex; ss << std::setw(2) << std::setfill('0') << (int)req->hddIndex; if (oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]].find(ss.str()) == oemData[KEY_Q_DRIVE_INFO].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; if (oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()].find( dimmInfoKey[req->paramSel]) == oemData[KEY_Q_DRIVE_INFO][ss.str()].end()) return CC_PARAM_NOT_SUPP_IN_CURR_STATE; str = oemData[KEY_Q_DRIVE_INFO][ctrlTypeKey[ctrlType]][ss.str()] [dimmInfoKey[req->paramSel]]; *data_len = strToBytes(str, res); return IPMI_CC_OK; } /* Helper function for sending DCMI commands to ME/BIC and * getting response back */ ipmi::RspType> sendDCMICmd([[maybe_unused]] ipmi::Context::ptr ctx, [[maybe_unused]] uint8_t cmd, std::vector& cmdData) { std::vector respData; #if BIC_ENABLED uint8_t bicAddr = (uint8_t)ctx->hostIdx << 2; if (sendBicCmd(ctx->netFn, ctx->cmd, bicAddr, cmdData, respData)) { return ipmi::responseUnspecifiedError(); } #else /* Add group id as first byte to request for ME command */ cmdData.insert(cmdData.begin(), groupDCMI); if (sendMeCmd(ipmi::netFnGroup, cmd, cmdData, respData)) { return ipmi::responseUnspecifiedError(); } /* Remove group id as first byte as it will be added by IPMID */ respData.erase(respData.begin()); #endif return ipmi::responseSuccess(std::move(respData)); } /* DCMI Command handellers. */ ipmi::RspType> ipmiOemDCMIGetPowerReading(ipmi::Context::ptr ctx, std::vector reqData) { return sendDCMICmd(ctx, ipmi::dcmi::cmdGetPowerReading, reqData); } ipmi::RspType> ipmiOemDCMIGetPowerLimit(ipmi::Context::ptr ctx, std::vector reqData) { return sendDCMICmd(ctx, ipmi::dcmi::cmdGetPowerLimit, reqData); } ipmi::RspType> ipmiOemDCMISetPowerLimit(ipmi::Context::ptr ctx, std::vector reqData) { return sendDCMICmd(ctx, ipmi::dcmi::cmdSetPowerLimit, reqData); } ipmi::RspType> ipmiOemDCMIApplyPowerLimit(ipmi::Context::ptr ctx, std::vector reqData) { return sendDCMICmd(ctx, ipmi::dcmi::cmdActDeactivatePwrLimit, reqData); } static void registerOEMFunctions(void) { /* Get OEM data from json file */ std::ifstream file(JSON_OEM_DATA_FILE); if (file) { file >> oemData; file.close(); } phosphor::logging::log( "Registering OEM commands"); ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_FRAME_INFO, NULL, ipmiOemDbgGetFrameInfo, PRIVILEGE_USER); // get debug frame info ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_UPDATED_FRAMES, NULL, ipmiOemDbgGetUpdFrames, PRIVILEGE_USER); // get debug updated frames ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_POST_DESC, NULL, ipmiOemDbgGetPostDesc, PRIVILEGE_USER); // get debug post description ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_GPIO_DESC, NULL, ipmiOemDbgGetGpioDesc, PRIVILEGE_USER); // get debug gpio description ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_GET_FRAME_DATA, NULL, ipmiOemDbgGetFrameData, PRIVILEGE_USER); // get debug frame data ipmiPrintAndRegister(NETFN_OEM_USB_DBG_REQ, CMD_OEM_USB_DBG_CTRL_PANEL, NULL, ipmiOemDbgGetCtrlPanel, PRIVILEGE_USER); // get debug control panel ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_DIMM_INFO, NULL, ipmiOemSetDimmInfo, PRIVILEGE_USER); // Set Dimm Info ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_GET_BOARD_ID, NULL, ipmiOemGetBoardID, PRIVILEGE_USER); // Get Board ID ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_MACHINE_CONFIG_INFO, NULL, ipmiOemSetMachineCfgInfo, PRIVILEGE_USER); // Set Machine Config Info ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_POST_START, NULL, ipmiOemSetPostStart, PRIVILEGE_USER); // Set POST start ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_POST_END, NULL, ipmiOemSetPostEnd, PRIVILEGE_USER); // Set POST End ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_PPIN_INFO, NULL, ipmiOemSetPPINInfo, PRIVILEGE_USER); // Set PPIN Info #if BIC_ENABLED ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemOne, ipmi::cmdSetSystemGuid, ipmi::Privilege::User, ipmiOemSetSystemGuid); #else ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_SYSTEM_GUID, NULL, ipmiOemSetSystemGuid, PRIVILEGE_USER); // Set System GUID #endif ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_ADR_TRIGGER, NULL, ipmiOemSetAdrTrigger, PRIVILEGE_USER); // Set ADR Trigger ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_BIOS_FLASH_INFO, NULL, ipmiOemSetBiosFlashInfo, PRIVILEGE_USER); // Set Bios Flash Info ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_SET_PPR, NULL, ipmiOemSetPpr, PRIVILEGE_USER); // Set PPR ipmiPrintAndRegister(NETFUN_NONE, CMD_OEM_GET_PPR, NULL, ipmiOemGetPpr, PRIVILEGE_USER); // Get PPR /* FB OEM QC Commands */ ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemFour, CMD_OEM_Q_SET_PROC_INFO, ipmi::Privilege::User, ipmiOemQSetProcInfo); // Set Proc Info ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemFour, CMD_OEM_Q_GET_PROC_INFO, ipmi::Privilege::User, ipmiOemQGetProcInfo); // Get Proc Info ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemFour, ipmi::cmdSetQDimmInfo, ipmi::Privilege::User, ipmiOemQSetDimmInfo); // Set Dimm Info ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemFour, ipmi::cmdGetQDimmInfo, ipmi::Privilege::User, ipmiOemQGetDimmInfo); // Get Dimm Info ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_SET_DRIVE_INFO, NULL, ipmiOemQSetDriveInfo, PRIVILEGE_USER); // Set Drive Info ipmiPrintAndRegister(NETFUN_FB_OEM_QC, CMD_OEM_Q_GET_DRIVE_INFO, NULL, ipmiOemQGetDriveInfo, PRIVILEGE_USER); // Get Drive Info /* FB OEM DCMI Commands as per DCMI spec 1.5 Section 6 */ ipmi::registerGroupHandler(ipmi::prioOpenBmcBase, groupDCMI, ipmi::dcmi::cmdGetPowerReading, ipmi::Privilege::User, ipmiOemDCMIGetPowerReading); // Get Power Reading ipmi::registerGroupHandler(ipmi::prioOpenBmcBase, groupDCMI, ipmi::dcmi::cmdGetPowerLimit, ipmi::Privilege::User, ipmiOemDCMIGetPowerLimit); // Get Power Limit ipmi::registerGroupHandler(ipmi::prioOpenBmcBase, groupDCMI, ipmi::dcmi::cmdSetPowerLimit, ipmi::Privilege::Operator, ipmiOemDCMISetPowerLimit); // Set Power Limit ipmi::registerGroupHandler(ipmi::prioOpenBmcBase, groupDCMI, ipmi::dcmi::cmdActDeactivatePwrLimit, ipmi::Privilege::Operator, ipmiOemDCMIApplyPowerLimit); // Apply Power Limit /* FB OEM BOOT ORDER COMMANDS */ ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemOne, CMD_OEM_GET_BOOT_ORDER, ipmi::Privilege::User, ipmiOemGetBootOrder); // Get Boot Order ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnOemOne, CMD_OEM_SET_BOOT_ORDER, ipmi::Privilege::User, ipmiOemSetBootOrder); // Set Boot Order return; } } // namespace ipmi