/* * Copyright (c) 2018 Intel Corporation. * Copyright (c) 2018-present Facebook. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include namespace ipmi { static constexpr int16_t maxInt10 = 0x1FF; static constexpr int16_t minInt10 = -0x200; static constexpr int8_t maxInt4 = 7; static constexpr int8_t minInt4 = -8; enum class SensorUnits : uint8_t { unspecified = 0x0, degreesC = 0x1, volts = 0x4, amps = 0x5, watts = 0x6, rpm = 0x12, }; enum class SensorTypeCodes : uint8_t { reserved = 0x0, temperature = 0x1, voltage = 0x2, current = 0x3, fan = 0x4, other = 0xB, }; struct CmpStrVersion { bool operator()(std::string a, std::string b) const { return strverscmp(a.c_str(), b.c_str()) < 0; } }; using SensorSubTree = boost::container::flat_map< std::string, boost::container::flat_map>, CmpStrVersion>; inline static bool getSensorSubtree(SensorSubTree& subtree) { sd_bus* bus = NULL; int ret = sd_bus_default_system(&bus); if (ret < 0) { phosphor::logging::log( "Failed to connect to system bus", phosphor::logging::entry("ERRNO=0x%X", -ret)); sd_bus_unref(bus); return false; } sdbusplus::bus_t dbus(bus); auto mapperCall = dbus.new_method_call("xyz.openbmc_project.ObjectMapper", "/xyz/openbmc_project/object_mapper", "xyz.openbmc_project.ObjectMapper", "GetSubTree"); static constexpr const auto depth = 2; static constexpr std::array interfaces = { "xyz.openbmc_project.Sensor.Value", "xyz.openbmc_project.Sensor.Threshold.Warning", "xyz.openbmc_project.Sensor.Threshold.Critical"}; mapperCall.append("/xyz/openbmc_project/sensors", depth, interfaces); try { auto mapperReply = dbus.call(mapperCall); subtree.clear(); mapperReply.read(subtree); } catch (sdbusplus::exception_t& e) { phosphor::logging::log(e.what()); return false; } return true; } // Specify the comparison required to sort and find char* map objects struct CmpStr { bool operator()(const char* a, const char* b) const { return std::strcmp(a, b) < 0; } }; const static boost::container::flat_map sensorUnits{{{"temperature", SensorUnits::degreesC}, {"voltage", SensorUnits::volts}, {"current", SensorUnits::amps}, {"fan_tach", SensorUnits::rpm}, {"power", SensorUnits::watts}}}; const static boost::container::flat_map sensorTypes{{{"temperature", SensorTypeCodes::temperature}, {"voltage", SensorTypeCodes::voltage}, {"current", SensorTypeCodes::current}, {"fan_tach", SensorTypeCodes::fan}, {"fan_pwm", SensorTypeCodes::fan}, {"power", SensorTypeCodes::other}}}; inline static std::string getSensorTypeStringFromPath(const std::string& path) { // get sensor type string from path, path is defined as // /xyz/openbmc_project/sensors//label size_t typeEnd = path.rfind("/"); if (typeEnd == std::string::npos) { return path; } size_t typeStart = path.rfind("/", typeEnd - 1); if (typeStart == std::string::npos) { return path; } // Start at the character after the '/' typeStart++; return path.substr(typeStart, typeEnd - typeStart); } inline static uint8_t getSensorTypeFromPath(const std::string& path) { uint8_t sensorType = 0; std::string type = getSensorTypeStringFromPath(path); auto findSensor = sensorTypes.find(type.c_str()); if (findSensor != sensorTypes.end()) { sensorType = static_cast(findSensor->second); } // else default 0x0 RESERVED return sensorType; } inline static uint8_t getSensorEventTypeFromPath(const std::string&) { // TODO: Add support for additional reading types as needed return 0x1; // reading type = threshold } static inline bool getSensorAttributes(const double max, const double min, int16_t& mValue, int8_t& rExp, int16_t& bValue, int8_t& bExp, bool& bSigned) { // computing y = (10^rRexp) * (Mx + (B*(10^Bexp))) // check for 0, assume always positive double mDouble; double bDouble; if (max <= min) { phosphor::logging::log( "getSensorAttributes: Max must be greater than min"); return false; } mDouble = (max - min) / 0xFF; if (min < 0) { bSigned = true; bDouble = floor(0.5 + ((max + min) / 2)); } else { bSigned = false; bDouble = min; } rExp = 0; // M too big for 10 bit variable while (mDouble > maxInt10) { if (rExp >= maxInt4) { phosphor::logging::log( "rExp Too big, Max and Min range too far", phosphor::logging::entry("REXP=%d", rExp)); return false; } mDouble /= 10; rExp++; } // M too small, loop until we lose less than 1 eight bit count of precision while (((mDouble - floor(mDouble)) / mDouble) > (1.0 / 255)) { if (rExp <= minInt4) { phosphor::logging::log( "rExp Too Small, Max and Min range too close"); return false; } // check to see if we reached the limit of where we can adjust back the // B value if (bDouble / std::pow(10, rExp + minInt4 - 1) > bDouble) { if (mDouble < 1.0) { phosphor::logging::log( "Could not find mValue and B value with enough " "precision."); return false; } break; } // can't multiply M any more, max precision reached else if (mDouble * 10 > maxInt10) { break; } mDouble *= 10; rExp--; } bDouble /= std::pow(10, rExp); bExp = 0; // B too big for 10 bit variable while (bDouble > maxInt10 || bDouble < minInt10) { if (bExp >= maxInt4) { phosphor::logging::log( "bExp Too Big, Max and Min range need to be adjusted"); return false; } bDouble /= 10; bExp++; } while (((fabs(bDouble) - floor(fabs(bDouble))) / fabs(bDouble)) > (1.0 / 255)) { if (bExp <= minInt4) { phosphor::logging::log( "bExp Too Small, Max and Min range need to be adjusted"); return false; } bDouble *= 10; bExp -= 1; } mValue = static_cast(mDouble) & maxInt10; bValue = static_cast(bDouble) & maxInt10; return true; } static inline uint8_t scaleIPMIValueFromDouble(const double value, const uint16_t mValue, const int8_t rExp, const uint16_t bValue, const int8_t bExp, const bool bSigned) { uint32_t scaledValue = (value - (bValue * std::pow(10, bExp) * std::pow(10, rExp))) / (mValue * std::pow(10, rExp)); if (scaledValue > std::numeric_limits::max() || scaledValue < std::numeric_limits::lowest()) { throw std::out_of_range("Value out of range"); } if (bSigned) { return static_cast(scaledValue); } else { return static_cast(scaledValue); } } static inline uint8_t getScaledIPMIValue(const double value, const double max, const double min) { int16_t mValue = 0; int8_t rExp = 0; int16_t bValue = 0; int8_t bExp = 0; bool bSigned = 0; bool result = 0; result = getSensorAttributes(max, min, mValue, rExp, bValue, bExp, bSigned); if (!result) { throw std::runtime_error("Illegal sensor attributes"); } return scaleIPMIValueFromDouble(value, mValue, rExp, bValue, bExp, bSigned); } } // namespace ipmi