#include "fru_device/fru_utils.hpp" #include #include #include #include "gmock/gmock.h" #include "gtest/gtest.h" using ::testing::Pair; using ::testing::UnorderedElementsAre; extern "C" { // Include for I2C_SMBUS_BLOCK_MAX #include } static constexpr size_t blockSize = I2C_SMBUS_BLOCK_MAX; TEST(ValidateHeaderTest, InvalidFruVersionReturnsFalse) { // Validates the FruVersion is checked for the only legal value. constexpr std::array fruHeader = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; EXPECT_FALSE(validateHeader(fruHeader)); } TEST(ValidateHeaderTest, InvalidReservedReturnsFalse) { // Validates the reserved bit(7:4) of first bytes. constexpr std::array fruHeader = { 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; EXPECT_FALSE(validateHeader(fruHeader)); } TEST(ValidateHeaderTest, InvalidPaddingReturnsFalse) { // Validates the padding byte (7th byte). constexpr std::array fruHeader = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00}; EXPECT_FALSE(validateHeader(fruHeader)); } TEST(ValidateHeaderTest, InvalidChecksumReturnsFalse) { // Validates the checksum, check for incorrect value. constexpr std::array fruHeader = { 0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0x00}; EXPECT_FALSE(validateHeader(fruHeader)); } TEST(ValidateHeaderTest, ValidChecksumReturnsTrue) { // Validates the checksum, check for correct value. constexpr std::array fruHeader = { 0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0xf5}; EXPECT_TRUE(validateHeader(fruHeader)); } TEST(VerifyOffsetTest, EmptyFruDataReturnsFalse) { // Validates the FruData size is checked for non empty. std::vector fruData = {}; EXPECT_FALSE(verifyOffset(fruData, fruAreas::fruAreaChassis, 0)); } TEST(VerifyOffsetTest, AreaOutOfRangeReturnsFalse) { // Validates the FruArea value, check if it is within range. const std::vector fruData = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; unsigned int areaOutOfRange = 8; EXPECT_FALSE( verifyOffset(fruData, static_cast(areaOutOfRange), 0)); } TEST(VerifyOffsetTest, OverlapNextAreaReturnsFalse) { // Validates the Overlap of offsets with overlapped values. const std::vector fruData = {0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00}; EXPECT_FALSE(verifyOffset(fruData, fruAreas::fruAreaChassis, 2)); } TEST(VerifyOffsetTest, OverlapPrevAreaReturnsFalse) { // Validates the Overlap of offsets with overlapped values. const std::vector fruData = {0x01, 0x00, 0x01, 0x03, 0x02, 0x07, 0x00, 0x00, 0x00}; EXPECT_FALSE(verifyOffset(fruData, fruAreas::fruAreaProduct, 2)); } TEST(VerifyOffsetTest, ValidInputDataNoOverlapReturnsTrue) { // Validates all inputs with expected value and no overlap. const std::vector fruData = {0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00}; EXPECT_TRUE(verifyOffset(fruData, fruAreas::fruAreaChassis, 1)); } TEST(VerifyChecksumTest, EmptyInput) { std::vector data = {}; EXPECT_EQ(calculateChecksum(data), 0); } TEST(VerifyChecksumTest, SingleOneInput) { std::vector data(1, 1); EXPECT_EQ(calculateChecksum(data), 255); } TEST(VerifyChecksumTest, AllOneInput) { std::vector data(256, 1); EXPECT_EQ(calculateChecksum(data), 0); } TEST(VerifyChecksumTest, WrapBoundaryLow) { std::vector data = {255, 0}; EXPECT_EQ(calculateChecksum(data), 1); } TEST(VerifyChecksumTest, WrapBoundaryExact) { std::vector data = {255, 1}; EXPECT_EQ(calculateChecksum(data), 0); } TEST(VerifyChecksumTest, WrapBoundaryHigh) { std::vector data = {255, 2}; EXPECT_EQ(calculateChecksum(data), 255); } int64_t getDataTempl(const std::vector& data, off_t offset, size_t length, uint8_t* outBuf) { if (offset >= static_cast(data.size())) { return 0; } uint16_t idx = offset; // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic) for (; idx < std::min(data.size(), offset + length); ++idx, ++outBuf) { *outBuf = data[idx]; } return idx - offset; } TEST(FRUReaderTest, ReadData) { std::vector data = {}; data.reserve(blockSize * 2); for (size_t i = 0; i < blockSize * 2; i++) { data.push_back(i); } std::array rdbuf{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(0, data.size(), rdbuf.data()), static_cast(data.size())); EXPECT_TRUE(std::equal(rdbuf.begin(), rdbuf.end(), data.begin())); for (size_t i = 0; i < blockSize * 2; i++) { EXPECT_EQ(reader.read(i, 1, rdbuf.data()), 1); EXPECT_EQ(rdbuf[i], i); } EXPECT_EQ(reader.read(blockSize - 1, 2, rdbuf.data()), 2); EXPECT_EQ(rdbuf[0], blockSize - 1); EXPECT_EQ(rdbuf[1], blockSize); } TEST(FRUReaderTest, StartPastUnknownEOF) { const std::vector data = {}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(1, 1, nullptr), 0); } TEST(FRUReaderTest, StartPastKnownEOF) { std::vector data = {}; data.resize(blockSize / 2); std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(0, blockSize, blockData.data()), static_cast(data.size())); EXPECT_EQ(reader.read(data.size(), 1, nullptr), 0); EXPECT_EQ(reader.read(data.size() + 1, 1, nullptr), 0); EXPECT_EQ(reader.read(blockSize, 1, nullptr), 0); EXPECT_EQ(reader.read(blockSize + 1, 1, nullptr), 0); } TEST(FRUReaderTest, DecreasingEOF) { const std::vector data = {}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(blockSize * 2, 1, nullptr), 0); EXPECT_EQ(reader.read(blockSize + (blockSize / 2), 1, nullptr), 0); EXPECT_EQ(reader.read(blockSize, 1, nullptr), 0); EXPECT_EQ(reader.read(blockSize / 2, 1, nullptr), 0); EXPECT_EQ(reader.read(0, 1, nullptr), 0); } TEST(FRUReaderTest, CacheHit) { std::vector data = {'X'}; std::array read1{}; std::array read2{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); // cache hit should return the same data for the second read even if we // change it behind the FRUReader's back after the first EXPECT_EQ(reader.read(0, blockSize, read1.data()), 1); data[0] = 'Y'; EXPECT_EQ(reader.read(0, blockSize, read2.data()), 1); EXPECT_EQ(read1[0], read2[0]); } TEST(FRUReaderTest, ReadPastKnownEnd) { const std::vector data = {'X', 'Y'}; std::array rdbuf{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(0, data.size(), rdbuf.data()), static_cast(data.size())); EXPECT_EQ(rdbuf[0], 'X'); EXPECT_EQ(rdbuf[1], 'Y'); EXPECT_EQ(reader.read(1, data.size(), rdbuf.data()), static_cast(data.size() - 1)); EXPECT_EQ(rdbuf[0], 'Y'); } TEST(FRUReaderTest, MultiBlockRead) { std::vector data = {}; data.resize(blockSize, 'X'); data.resize(2 * blockSize, 'Y'); std::array rdbuf{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(0, 2 * blockSize, rdbuf.data()), static_cast(2 * blockSize)); EXPECT_TRUE(std::equal(rdbuf.begin(), rdbuf.end(), data.begin())); } TEST(FRUReaderTest, ShrinkingEEPROM) { std::vector data = {}; data.resize(3 * blockSize, 'X'); std::array rdbuf{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(data.size() - 1, 2, rdbuf.data()), 1); data.resize(blockSize); EXPECT_EQ(reader.read(data.size() - 1, 2, rdbuf.data()), 1); } TEST(FindFRUHeaderTest, InvalidHeader) { const std::vector data = {255, 16}; off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_FALSE(findFRUHeader(reader, "error", blockData, offset)); } TEST(FindFRUHeaderTest, NoData) { const std::vector data = {}; off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_FALSE(findFRUHeader(reader, "error", blockData, offset)); } TEST(FindFRUHeaderTest, ValidHeader) { const std::vector data = {0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0xf5}; off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_TRUE(findFRUHeader(reader, "error", blockData, offset)); EXPECT_EQ(0, offset); } TEST(FindFRUHeaderTest, TyanInvalidHeader) { std::vector data = {'$', 'T', 'Y', 'A', 'N', '$', 0, 0}; data.resize(0x6000 + I2C_SMBUS_BLOCK_MAX); off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_FALSE(findFRUHeader(reader, "error", blockData, offset)); } TEST(FindFRUHeaderTest, TyanNoData) { const std::vector data = {'$', 'T', 'Y', 'A', 'N', '$', 0, 0}; off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_FALSE(findFRUHeader(reader, "error", blockData, offset)); } TEST(FindFRUHeaderTest, TyanValidHeader) { std::vector data = {'$', 'T', 'Y', 'A', 'N', '$', 0, 0}; data.resize(0x6000); constexpr std::array fruHeader = { 0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0xf5}; copy(fruHeader.begin(), fruHeader.end(), back_inserter(data)); off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_TRUE(findFRUHeader(reader, "error", blockData, offset)); EXPECT_EQ(0x6000, offset); } TEST(formatIPMIFRU, FullDecode) { const std::array bmcFru = { 0x01, 0x00, 0x00, 0x01, 0x0b, 0x00, 0x00, 0xf3, 0x01, 0x0a, 0x19, 0x1f, 0x0f, 0xe6, 0xc6, 0x4e, 0x56, 0x49, 0x44, 0x49, 0x41, 0xc5, 0x50, 0x33, 0x38, 0x30, 0x39, 0xcd, 0x31, 0x35, 0x38, 0x33, 0x33, 0x32, 0x34, 0x38, 0x30, 0x30, 0x31, 0x35, 0x30, 0xd2, 0x36, 0x39, 0x39, 0x2d, 0x31, 0x33, 0x38, 0x30, 0x39, 0x2d, 0x30, 0x34, 0x30, 0x34, 0x2d, 0x36, 0x30, 0x30, 0xc0, 0x01, 0x01, 0xd6, 0x4d, 0x41, 0x43, 0x3a, 0x20, 0x33, 0x43, 0x3a, 0x36, 0x44, 0x3a, 0x36, 0x36, 0x3a, 0x31, 0x34, 0x3a, 0x43, 0x38, 0x3a, 0x37, 0x41, 0xc1, 0x3b, 0x01, 0x09, 0x19, 0xc6, 0x4e, 0x56, 0x49, 0x44, 0x49, 0x41, 0xc9, 0x50, 0x33, 0x38, 0x30, 0x39, 0x2d, 0x42, 0x4d, 0x43, 0xd2, 0x36, 0x39, 0x39, 0x2d, 0x31, 0x33, 0x38, 0x30, 0x39, 0x2d, 0x30, 0x34, 0x30, 0x34, 0x2d, 0x36, 0x30, 0x30, 0xc4, 0x41, 0x45, 0x2e, 0x31, 0xcd, 0x31, 0x35, 0x38, 0x33, 0x33, 0x32, 0x34, 0x38, 0x30, 0x30, 0x31, 0x35, 0x30, 0xc0, 0xc4, 0x76, 0x30, 0x2e, 0x31, 0xc1, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xb4, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; boost::container::flat_map result; ASSERT_EQ(formatIPMIFRU(bmcFru, result), resCodes::resOK); EXPECT_THAT( result, UnorderedElementsAre( Pair("BOARD_FRU_VERSION_ID", ""), Pair("BOARD_INFO_AM1", "01"), Pair("BOARD_INFO_AM2", "MAC: 3C:6D:66:14:C8:7A"), Pair("BOARD_LANGUAGE_CODE", "25"), Pair("BOARD_MANUFACTURER", "NVIDIA"), Pair("BOARD_MANUFACTURE_DATE", "20240831T055100Z"), Pair("BOARD_PART_NUMBER", "699-13809-0404-600"), Pair("BOARD_PRODUCT_NAME", "P3809"), Pair("BOARD_SERIAL_NUMBER", "1583324800150"), Pair("Common_Format_Version", "1"), Pair("PRODUCT_ASSET_TAG", ""), Pair("MAC_BOARD_INFO_AM2", "3C:6D:66:14:C8:7A"), Pair("PRODUCT_FRU_VERSION_ID", "v0.1"), Pair("PRODUCT_LANGUAGE_CODE", "25"), Pair("PRODUCT_MANUFACTURER", "NVIDIA"), Pair("PRODUCT_PART_NUMBER", "699-13809-0404-600"), Pair("PRODUCT_PRODUCT_NAME", "P3809-BMC"), Pair("PRODUCT_SERIAL_NUMBER", "1583324800150"), Pair("PRODUCT_VERSION", "AE.1"))); }