#include "fru_device/fru_utils.hpp" #include #include #include #include "gmock/gmock.h" #include "gtest/gtest.h" using ::testing::Pair; using ::testing::UnorderedElementsAre; extern "C" { // Include for I2C_SMBUS_BLOCK_MAX #include } static constexpr size_t blockSize = I2C_SMBUS_BLOCK_MAX; TEST(ValidateHeaderTest, InvalidFruVersionReturnsFalse) { // Validates the FruVersion is checked for the only legal value. constexpr std::array fruHeader = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; EXPECT_FALSE(validateHeader(fruHeader)); } TEST(ValidateHeaderTest, InvalidReservedReturnsFalse) { // Validates the reserved bit(7:4) of first bytes. constexpr std::array fruHeader = { 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; EXPECT_FALSE(validateHeader(fruHeader)); } TEST(ValidateHeaderTest, InvalidPaddingReturnsFalse) { // Validates the padding byte (7th byte). constexpr std::array fruHeader = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00}; EXPECT_FALSE(validateHeader(fruHeader)); } TEST(ValidateHeaderTest, InvalidChecksumReturnsFalse) { // Validates the checksum, check for incorrect value. constexpr std::array fruHeader = { 0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0x00}; EXPECT_FALSE(validateHeader(fruHeader)); } TEST(ValidateHeaderTest, ValidChecksumReturnsTrue) { // Validates the checksum, check for correct value. constexpr std::array fruHeader = { 0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0xf5}; EXPECT_TRUE(validateHeader(fruHeader)); } TEST(VerifyOffsetTest, EmptyFruDataReturnsFalse) { // Validates the FruData size is checked for non empty. std::vector fruData = {}; EXPECT_FALSE(verifyOffset(fruData, fruAreas::fruAreaChassis, 0)); } TEST(VerifyOffsetTest, AreaOutOfRangeReturnsFalse) { // Validates the FruArea value, check if it is within range. const std::vector fruData = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; unsigned int areaOutOfRange = 8; EXPECT_FALSE( verifyOffset(fruData, static_cast(areaOutOfRange), 0)); } TEST(VerifyOffsetTest, OverlapNextAreaReturnsFalse) { // Validates the Overlap of offsets with overlapped values. const std::vector fruData = {0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00}; EXPECT_FALSE(verifyOffset(fruData, fruAreas::fruAreaChassis, 2)); } TEST(VerifyOffsetTest, OverlapPrevAreaReturnsFalse) { // Validates the Overlap of offsets with overlapped values. const std::vector fruData = {0x01, 0x00, 0x01, 0x03, 0x02, 0x07, 0x00, 0x00, 0x00}; EXPECT_FALSE(verifyOffset(fruData, fruAreas::fruAreaProduct, 2)); } TEST(VerifyOffsetTest, ValidInputDataNoOverlapReturnsTrue) { // Validates all inputs with expected value and no overlap. const std::vector fruData = {0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0x00}; EXPECT_TRUE(verifyOffset(fruData, fruAreas::fruAreaChassis, 1)); } TEST(VerifyChecksumTest, EmptyInput) { std::vector data = {}; EXPECT_EQ(calculateChecksum(data), 0); } TEST(VerifyChecksumTest, SingleOneInput) { std::vector data(1, 1); EXPECT_EQ(calculateChecksum(data), 255); } TEST(VerifyChecksumTest, AllOneInput) { std::vector data(256, 1); EXPECT_EQ(calculateChecksum(data), 0); } TEST(VerifyChecksumTest, WrapBoundaryLow) { std::vector data = {255, 0}; EXPECT_EQ(calculateChecksum(data), 1); } TEST(VerifyChecksumTest, WrapBoundaryExact) { std::vector data = {255, 1}; EXPECT_EQ(calculateChecksum(data), 0); } TEST(VerifyChecksumTest, WrapBoundaryHigh) { std::vector data = {255, 2}; EXPECT_EQ(calculateChecksum(data), 255); } int64_t getDataTempl(const std::vector& data, off_t offset, size_t length, uint8_t* outBuf) { if (offset >= static_cast(data.size())) { return 0; } uint16_t idx = offset; // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic) for (; idx < std::min(data.size(), offset + length); ++idx, ++outBuf) { *outBuf = data[idx]; } return idx - offset; } TEST(FRUReaderTest, ReadData) { std::vector data = {}; data.reserve(blockSize * 2); for (size_t i = 0; i < blockSize * 2; i++) { data.push_back(i); } std::array rdbuf{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(0, data.size(), rdbuf.data()), static_cast(data.size())); EXPECT_TRUE(std::equal(rdbuf.begin(), rdbuf.end(), data.begin())); for (size_t i = 0; i < blockSize * 2; i++) { EXPECT_EQ(reader.read(i, 1, rdbuf.data()), 1); EXPECT_EQ(rdbuf[i], i); } EXPECT_EQ(reader.read(blockSize - 1, 2, rdbuf.data()), 2); EXPECT_EQ(rdbuf[0], blockSize - 1); EXPECT_EQ(rdbuf[1], blockSize); } TEST(FRUReaderTest, StartPastUnknownEOF) { const std::vector data = {}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(1, 1, nullptr), 0); } TEST(FRUReaderTest, StartPastKnownEOF) { std::vector data = {}; data.resize(blockSize / 2); std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(0, blockSize, blockData.data()), static_cast(data.size())); EXPECT_EQ(reader.read(data.size(), 1, nullptr), 0); EXPECT_EQ(reader.read(data.size() + 1, 1, nullptr), 0); EXPECT_EQ(reader.read(blockSize, 1, nullptr), 0); EXPECT_EQ(reader.read(blockSize + 1, 1, nullptr), 0); } TEST(FRUReaderTest, DecreasingEOF) { const std::vector data = {}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(blockSize * 2, 1, nullptr), 0); EXPECT_EQ(reader.read(blockSize + (blockSize / 2), 1, nullptr), 0); EXPECT_EQ(reader.read(blockSize, 1, nullptr), 0); EXPECT_EQ(reader.read(blockSize / 2, 1, nullptr), 0); EXPECT_EQ(reader.read(0, 1, nullptr), 0); } TEST(FRUReaderTest, CacheHit) { std::vector data = {'X'}; std::array read1{}; std::array read2{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); // cache hit should return the same data for the second read even if we // change it behind the FRUReader's back after the first EXPECT_EQ(reader.read(0, blockSize, read1.data()), 1); data[0] = 'Y'; EXPECT_EQ(reader.read(0, blockSize, read2.data()), 1); EXPECT_EQ(read1[0], read2[0]); } TEST(FRUReaderTest, ReadPastKnownEnd) { const std::vector data = {'X', 'Y'}; std::array rdbuf{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(0, data.size(), rdbuf.data()), static_cast(data.size())); EXPECT_EQ(rdbuf[0], 'X'); EXPECT_EQ(rdbuf[1], 'Y'); EXPECT_EQ(reader.read(1, data.size(), rdbuf.data()), static_cast(data.size() - 1)); EXPECT_EQ(rdbuf[0], 'Y'); } TEST(FRUReaderTest, MultiBlockRead) { std::vector data = {}; data.resize(blockSize, 'X'); data.resize(2 * blockSize, 'Y'); std::array rdbuf{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(0, 2 * blockSize, rdbuf.data()), static_cast(2 * blockSize)); EXPECT_TRUE(std::equal(rdbuf.begin(), rdbuf.end(), data.begin())); } TEST(FRUReaderTest, ShrinkingEEPROM) { std::vector data = {}; data.resize(3 * blockSize, 'X'); std::array rdbuf{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_EQ(reader.read(data.size() - 1, 2, rdbuf.data()), 1); data.resize(blockSize); EXPECT_EQ(reader.read(data.size() - 1, 2, rdbuf.data()), 1); } TEST(FindFRUHeaderTest, InvalidHeader) { const std::vector data = {255, 16}; off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_FALSE(findFRUHeader(reader, "error", blockData, offset)); } TEST(FindFRUHeaderTest, NoData) { const std::vector data = {}; off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_FALSE(findFRUHeader(reader, "error", blockData, offset)); } TEST(FindFRUHeaderTest, ValidHeader) { const std::vector data = {0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0xf5}; off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_TRUE(findFRUHeader(reader, "error", blockData, offset)); EXPECT_EQ(0, offset); } TEST(FindFRUHeaderTest, TyanInvalidHeader) { std::vector data = {'$', 'T', 'Y', 'A', 'N', '$', 0, 0}; data.resize(0x6000 + I2C_SMBUS_BLOCK_MAX); off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_FALSE(findFRUHeader(reader, "error", blockData, offset)); } TEST(FindFRUHeaderTest, TyanNoData) { const std::vector data = {'$', 'T', 'Y', 'A', 'N', '$', 0, 0}; off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_FALSE(findFRUHeader(reader, "error", blockData, offset)); } TEST(FindFRUHeaderTest, TyanValidHeader) { std::vector data = {'$', 'T', 'Y', 'A', 'N', '$', 0, 0}; data.resize(0x6000); constexpr std::array fruHeader = { 0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0xf5}; copy(fruHeader.begin(), fruHeader.end(), back_inserter(data)); off_t offset = 0; std::array blockData{}; auto getData = [&data](auto o, auto l, auto* b) { return getDataTempl(data, o, l, b); }; FRUReader reader(getData); EXPECT_TRUE(findFRUHeader(reader, "error", blockData, offset)); EXPECT_EQ(0x6000, offset); } TEST(formatIPMIFRU, FullDecode) { const std::array bmcFru = { 0x01, 0x00, 0x00, 0x01, 0x0b, 0x00, 0x00, 0xf3, 0x01, 0x0a, 0x19, 0x1f, 0x0f, 0xe6, 0xc6, 0x4e, 0x56, 0x49, 0x44, 0x49, 0x41, 0xc5, 0x50, 0x33, 0x38, 0x30, 0x39, 0xcd, 0x31, 0x35, 0x38, 0x33, 0x33, 0x32, 0x34, 0x38, 0x30, 0x30, 0x31, 0x35, 0x30, 0xd2, 0x36, 0x39, 0x39, 0x2d, 0x31, 0x33, 0x38, 0x30, 0x39, 0x2d, 0x30, 0x34, 0x30, 0x34, 0x2d, 0x36, 0x30, 0x30, 0xc0, 0x01, 0x01, 0xd6, 0x4d, 0x41, 0x43, 0x3a, 0x20, 0x33, 0x43, 0x3a, 0x36, 0x44, 0x3a, 0x36, 0x36, 0x3a, 0x31, 0x34, 0x3a, 0x43, 0x38, 0x3a, 0x37, 0x41, 0xc1, 0x3b, 0x01, 0x09, 0x19, 0xc6, 0x4e, 0x56, 0x49, 0x44, 0x49, 0x41, 0xc9, 0x50, 0x33, 0x38, 0x30, 0x39, 0x2d, 0x42, 0x4d, 0x43, 0xd2, 0x36, 0x39, 0x39, 0x2d, 0x31, 0x33, 0x38, 0x30, 0x39, 0x2d, 0x30, 0x34, 0x30, 0x34, 0x2d, 0x36, 0x30, 0x30, 0xc4, 0x41, 0x45, 0x2e, 0x31, 0xcd, 0x31, 0x35, 0x38, 0x33, 0x33, 0x32, 0x34, 0x38, 0x30, 0x30, 0x31, 0x35, 0x30, 0xc0, 0xc4, 0x76, 0x30, 0x2e, 0x31, 0xc1, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xb4, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; boost::container::flat_map result; ASSERT_EQ(formatIPMIFRU(bmcFru, result), resCodes::resOK); EXPECT_THAT( result, UnorderedElementsAre( Pair("BOARD_FRU_VERSION_ID", ""), Pair("BOARD_INFO_AM1", "01"), Pair("BOARD_INFO_AM2", "MAC: 3C:6D:66:14:C8:7A"), Pair("BOARD_LANGUAGE_CODE", "25"), Pair("BOARD_MANUFACTURER", "NVIDIA"), Pair("BOARD_MANUFACTURE_DATE", "20240831T055100Z"), Pair("BOARD_PART_NUMBER", "699-13809-0404-600"), Pair("BOARD_PRODUCT_NAME", "P3809"), Pair("BOARD_SERIAL_NUMBER", "1583324800150"), Pair("Common_Format_Version", "1"), Pair("PRODUCT_ASSET_TAG", ""), Pair("MAC_BOARD_INFO_AM2", "3C:6D:66:14:C8:7A"), Pair("PRODUCT_FRU_VERSION_ID", "v0.1"), Pair("PRODUCT_LANGUAGE_CODE", "25"), Pair("PRODUCT_MANUFACTURER", "NVIDIA"), Pair("PRODUCT_PART_NUMBER", "699-13809-0404-600"), Pair("PRODUCT_PRODUCT_NAME", "P3809-BMC"), Pair("PRODUCT_SERIAL_NUMBER", "1583324800150"), Pair("PRODUCT_VERSION", "AE.1"))); } // Test for the `isFieldEditable` function TEST(IsFieldEditableTest, ValidField) { // Test with a valid field name that is editable // All PRODUCT fields are editable EXPECT_TRUE(isFieldEditable("PRODUCT_MANUFACTURER")); EXPECT_TRUE(isFieldEditable("PRODUCT_PART_NUMBER")); EXPECT_TRUE(isFieldEditable("PRODUCT_SERIAL_NUMBER")); EXPECT_TRUE(isFieldEditable("PRODUCT_VERSION")); EXPECT_TRUE(isFieldEditable("PRODUCT_PART_NUMBER")); EXPECT_TRUE(isFieldEditable("PRODUCT_PRODUCT_NAME")); EXPECT_TRUE(isFieldEditable("PRODUCT_ASSET_TAG")); EXPECT_TRUE(isFieldEditable("PRODUCT_FRU_VERSION_ID")); EXPECT_TRUE(isFieldEditable("PRODUCT_INFO_AM0")); // All BOARD fields are editable EXPECT_TRUE(isFieldEditable("BOARD_MANUFACTURER")); EXPECT_TRUE(isFieldEditable("BOARD_PART_NUMBER")); EXPECT_TRUE(isFieldEditable("BOARD_SERIAL_NUMBER")); EXPECT_TRUE(isFieldEditable("BOARD_FRU_VERSION_ID")); EXPECT_TRUE(isFieldEditable("BOARD_PRODUCT_NAME")); EXPECT_TRUE(isFieldEditable("BOARD_INFO_AM0")); EXPECT_TRUE(isFieldEditable("BOARD_INFO_AM10")); // All CHASSIS fields are editable EXPECT_TRUE(isFieldEditable("CHASSIS_PART_NUMBER")); EXPECT_TRUE(isFieldEditable("CHASSIS_SERIAL_NUMBER")); EXPECT_TRUE(isFieldEditable("CHASSIS_INFO_AM0")); EXPECT_TRUE(isFieldEditable("CHASSIS_INFO_AM10")); } TEST(IsFieldEditableTest, InvalidField) { // Test with an invalid field name that is not editable EXPECT_FALSE(isFieldEditable("INVALID_FIELD")); EXPECT_FALSE(isFieldEditable("PRODUCT_INVALID_FIELD")); EXPECT_FALSE(isFieldEditable("BOARD_INVALID_FIELD")); EXPECT_FALSE(isFieldEditable("CHASSIS_INVALID_FIELD")); // Test with a field that does not match the expected pattern EXPECT_FALSE(isFieldEditable("PRODUCT_12345")); EXPECT_FALSE(isFieldEditable("BOARD_67890")); EXPECT_FALSE(isFieldEditable("ABCD_CHASSIS")); EXPECT_FALSE(isFieldEditable("ABCD_PRODUCT")); EXPECT_FALSE(isFieldEditable("ABCD_BOARD")); } TEST(UpdateAreaChecksumTest, EmptyArea) { // Validates that an empty area does not cause any issues. std::vector fruArea = {}; EXPECT_FALSE(updateAreaChecksum(fruArea)); } TEST(UpdateAreaChecksumTest, ValidArea) { // Validates that a valid area updates the checksum correctly. std::vector fruArea = {0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0x00}; EXPECT_TRUE(updateAreaChecksum(fruArea)); EXPECT_EQ(fruArea.back(), 0xf5); } TEST(UpdateAreaChecksumTest, InvalidArea) { // Validates that an invalid area does not update the checksum. std::vector fruArea = {0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x00, 0x00, 0xAA}; EXPECT_FALSE(updateAreaChecksum(fruArea)); } TEST(DisassembleFruDataTest, EmptyData) { // Validates that an empty data vector returns false. std::vector fruData = {}; std::vector> areasData; EXPECT_FALSE(disassembleFruData(fruData, areasData)); } TEST(DisassembleFruDataTest, ValidData) { // Taken from qemu fby35_bmc_fruid std::vector fruData = { 0x01, 0x00, 0x00, 0x01, 0x0d, 0x00, 0x00, 0xf1, 0x01, 0x0c, 0x00, 0x36, 0xe6, 0xd0, 0xc6, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0xd2, 0x42, 0x4d, 0x43, 0x20, 0x53, 0x74, 0x6f, 0x72, 0x61, 0x67, 0x65, 0x20, 0x4d, 0x6f, 0x64, 0x75, 0x6c, 0x65, 0xcd, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0xce, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0xc3, 0x31, 0x2e, 0x30, 0xc9, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0xd2, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0xc1, 0x39, 0x01, 0x0c, 0x00, 0xc6, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0xd2, 0x59, 0x6f, 0x73, 0x65, 0x6d, 0x69, 0x74, 0x65, 0x20, 0x56, 0x33, 0x2e, 0x35, 0x20, 0x45, 0x56, 0x54, 0x32, 0xce, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0xc4, 0x45, 0x56, 0x54, 0x32, 0xcd, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0xc7, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0xc3, 0x31, 0x2e, 0x30, 0xc9, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0x58, 0xc8, 0x43, 0x6f, 0x6e, 0x66, 0x69, 0x67, 0x20, 0x41, 0xc1, 0x45, }; std::vector> areasData; ASSERT_TRUE(disassembleFruData(fruData, areasData)); EXPECT_GT(areasData.size(), 1U); // Internal area is size is zero EXPECT_EQ(areasData[static_cast(fruAreas::fruAreaInternal)].size(), 0U); // Chassis are is zero EXPECT_EQ(areasData[static_cast(fruAreas::fruAreaChassis)].size(), 0U); // Board area is 96 byte EXPECT_EQ(areasData[static_cast(fruAreas::fruAreaBoard)].size(), 96U); // Product area is 96 byte EXPECT_EQ(areasData[static_cast(fruAreas::fruAreaProduct)].size(), 96U); // Multi-record area is 64 byte. EXPECT_EQ( areasData[static_cast(fruAreas::fruAreaMultirecord)].size(), 0U); EXPECT_TRUE(setField(fruAreas::fruAreaBoard, areasData[static_cast(fruAreas::fruAreaBoard)], "BOARD_INFO_AM1", "01")); EXPECT_TRUE(setField(fruAreas::fruAreaBoard, areasData[static_cast(fruAreas::fruAreaBoard)], "BOARD_INFO_AM2", "MAC: 3C:6D:66:14:C8:7A")); // set Product fields EXPECT_TRUE( setField(fruAreas::fruAreaProduct, areasData[static_cast(fruAreas::fruAreaProduct)], "PRODUCT_ASSET_TAG", "123")); EXPECT_TRUE( setField(fruAreas::fruAreaProduct, areasData[static_cast(fruAreas::fruAreaProduct)], "PRODUCT_PART_NUMBER", "699-13809-0404-600")); EXPECT_TRUE( setField(fruAreas::fruAreaProduct, areasData[static_cast(fruAreas::fruAreaProduct)], "PRODUCT_PRODUCT_NAME", "OpenBMC-test1")); EXPECT_EQ( areasData[static_cast(fruAreas::fruAreaProduct)].size() % 8, 0); EXPECT_EQ(areasData[static_cast(fruAreas::fruAreaBoard)].size() % 8, 0); std::vector assembledData; EXPECT_TRUE(assembleFruData(assembledData, areasData)); boost::container::flat_map result; auto rescode = formatIPMIFRU(assembledData, result); EXPECT_NE(rescode, resCodes::resErr); EXPECT_EQ(result["PRODUCT_ASSET_TAG"], "123"); EXPECT_EQ(result["PRODUCT_PART_NUMBER"], "699-13809-0404-600"); EXPECT_EQ(result["PRODUCT_PRODUCT_NAME"], "OpenBMC-test1"); EXPECT_EQ(result["BOARD_INFO_AM1"], "01"); EXPECT_EQ(result["BOARD_INFO_AM2"], "MAC: 3C:6D:66:14:C8:7A"); } TEST(ReassembleFruDataTest, UnalignedFails) { std::vector areaOne{0, 35}; std::vector areaTwo{0, 32}; std::vector> areas; areas.push_back(areaOne); areas.push_back(areaTwo); std::vector fruData; EXPECT_FALSE(assembleFruData(fruData, areas)); }