/* // Copyright (c) 2018 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ /// \file fru_device.cpp #include "fru_utils.hpp" #include "utils.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern "C" { #include #include } namespace fs = std::filesystem; static constexpr bool debug = false; constexpr size_t maxFruSize = 512; constexpr size_t maxEepromPageIndex = 255; constexpr size_t busTimeoutSeconds = 10; constexpr const char* blocklistPath = PACKAGE_DIR "blacklist.json"; const static constexpr char* baseboardFruLocation = "/etc/fru/baseboard.fru.bin"; const static constexpr char* i2CDevLocation = "/dev"; // TODO Refactor these to not be globals // NOLINTBEGIN(cppcoreguidelines-avoid-non-const-global-variables) static boost::container::flat_map>> busBlocklist; struct FindDevicesWithCallback; static boost::container::flat_map< std::pair, std::shared_ptr> foundDevices; static boost::container::flat_map> failedAddresses; static boost::container::flat_map> fruAddresses; boost::asio::io_context io; // NOLINTEND(cppcoreguidelines-avoid-non-const-global-variables) bool updateFRUProperty( const std::string& updatePropertyReq, uint32_t bus, uint32_t address, const std::string& propertyName, boost::container::flat_map< std::pair, std::shared_ptr>& dbusInterfaceMap, size_t& unknownBusObjectCount, const bool& powerIsOn, sdbusplus::asio::object_server& objServer, std::shared_ptr& systemBus); // Given a bus/address, produce the path in sysfs for an eeprom. static std::string getEepromPath(size_t bus, size_t address) { std::stringstream output; output << "/sys/bus/i2c/devices/" << bus << "-" << std::right << std::setfill('0') << std::setw(4) << std::hex << address << "/eeprom"; return output.str(); } static bool hasEepromFile(size_t bus, size_t address) { auto path = getEepromPath(bus, address); try { return fs::exists(path); } catch (...) { return false; } } static int64_t readFromEeprom(int fd, off_t offset, size_t len, uint8_t* buf) { auto result = lseek(fd, offset, SEEK_SET); if (result < 0) { std::cerr << "failed to seek\n"; return -1; } return read(fd, buf, len); } static int busStrToInt(const std::string_view busName) { auto findBus = busName.rfind('-'); if (findBus == std::string::npos) { return -1; } std::string_view num = busName.substr(findBus + 1); int val = 0; std::from_chars(num.data(), num.data() + num.size(), val); return val; } static int getRootBus(size_t bus) { auto ec = std::error_code(); auto path = std::filesystem::read_symlink( std::filesystem::path("/sys/bus/i2c/devices/i2c-" + std::to_string(bus) + "/mux_device"), ec); if (ec) { return -1; } std::string filename = path.filename(); auto findBus = filename.find('-'); if (findBus == std::string::npos) { return -1; } return std::stoi(filename.substr(0, findBus)); } static bool isMuxBus(size_t bus) { auto ec = std::error_code(); auto isSymlink = is_symlink(std::filesystem::path("/sys/bus/i2c/devices/i2c-" + std::to_string(bus) + "/mux_device"), ec); return (!ec && isSymlink); } static void makeProbeInterface(size_t bus, size_t address, sdbusplus::asio::object_server& objServer) { if (isMuxBus(bus)) { return; // the mux buses are random, no need to publish } auto [it, success] = foundDevices.emplace( std::make_pair(bus, address), objServer.add_interface( "/xyz/openbmc_project/FruDevice/" + std::to_string(bus) + "_" + std::to_string(address), "xyz.openbmc_project.Inventory.Item.I2CDevice")); if (!success) { return; // already added } it->second->register_property("Bus", bus); it->second->register_property("Address", address); it->second->initialize(); } static std::optional isDevice16Bit(int file) { // Set the higher data word address bits to 0. It's safe on 8-bit addressing // EEPROMs because it doesn't write any actual data. int ret = i2c_smbus_write_byte(file, 0); if (ret < 0) { return std::nullopt; } /* Get first byte */ int byte1 = i2c_smbus_read_byte_data(file, 0); if (byte1 < 0) { return std::nullopt; } /* Read 7 more bytes, it will read same first byte in case of * 8 bit but it will read next byte in case of 16 bit */ for (int i = 0; i < 7; i++) { int byte2 = i2c_smbus_read_byte_data(file, 0); if (byte2 < 0) { return std::nullopt; } if (byte2 != byte1) { return true; } } return false; } // Issue an I2C transaction to first write to_target_buf_len bytes,then read // from_target_buf_len bytes. static int i2cSmbusWriteThenRead(int file, uint16_t address, uint8_t* toTargetBuf, uint8_t toTargetBufLen, uint8_t* fromTargetBuf, uint8_t fromTargetBufLen) { if (toTargetBuf == nullptr || toTargetBufLen == 0 || fromTargetBuf == nullptr || fromTargetBufLen == 0) { return -1; } constexpr size_t smbusWriteThenReadMsgCount = 2; std::array msgs{}; struct i2c_rdwr_ioctl_data rdwr {}; msgs[0].addr = address; msgs[0].flags = 0; msgs[0].len = toTargetBufLen; msgs[0].buf = toTargetBuf; msgs[1].addr = address; msgs[1].flags = I2C_M_RD; msgs[1].len = fromTargetBufLen; msgs[1].buf = fromTargetBuf; rdwr.msgs = msgs.data(); rdwr.nmsgs = msgs.size(); int ret = ioctl(file, I2C_RDWR, &rdwr); return (ret == static_cast(msgs.size())) ? msgs[1].len : -1; } static int64_t readData(bool is16bit, bool isBytewise, int file, uint16_t address, off_t offset, size_t len, uint8_t* buf) { if (!is16bit) { if (!isBytewise) { return i2c_smbus_read_i2c_block_data( file, static_cast(offset), len, buf); } std::span bufspan{buf, len}; for (size_t i = 0; i < len; i++) { int byte = i2c_smbus_read_byte_data( file, static_cast(offset + i)); if (byte < 0) { return static_cast(byte); } bufspan[i] = static_cast(byte); } return static_cast(len); } offset = htobe16(offset); // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) uint8_t* u8Offset = reinterpret_cast(&offset); return i2cSmbusWriteThenRead(file, address, u8Offset, 2, buf, len); } // TODO: This code is very similar to the non-eeprom version and can be merged // with some tweaks. static std::vector processEeprom(int bus, int address) { auto path = getEepromPath(bus, address); int file = open(path.c_str(), O_RDONLY); if (file < 0) { std::cerr << "Unable to open eeprom file: " << path << "\n"; return {}; } std::string errorMessage = "eeprom at " + std::to_string(bus) + " address " + std::to_string(address); auto readFunc = [file](off_t offset, size_t length, uint8_t* outbuf) { return readFromEeprom(file, offset, length, outbuf); }; FRUReader reader(std::move(readFunc)); std::pair, bool> pair = readFRUContents(reader, errorMessage); close(file); return pair.first; } std::set findI2CEeproms(int i2cBus, const std::shared_ptr& devices) { std::set foundList; std::string path = "/sys/bus/i2c/devices/i2c-" + std::to_string(i2cBus); // For each file listed under the i2c device // NOTE: This should be faster than just checking for each possible address // path. auto ec = std::error_code(); for (const auto& p : fs::directory_iterator(path, ec)) { if (ec) { std::cerr << "directory_iterator err " << ec.message() << "\n"; break; } const std::string node = p.path().string(); std::smatch m; bool found = std::regex_match(node, m, std::regex(".+\\d+-([0-9abcdef]+$)")); if (!found) { continue; } if (m.size() != 2) { std::cerr << "regex didn't capture\n"; continue; } std::ssub_match subMatch = m[1]; std::string addressString = subMatch.str(); std::string_view addressStringView(addressString); size_t address = 0; std::from_chars(addressStringView.begin(), addressStringView.end(), address, 16); const std::string eeprom = node + "/eeprom"; try { if (!fs::exists(eeprom)) { continue; } } catch (...) { continue; } // There is an eeprom file at this address, it may have invalid // contents, but we found it. foundList.insert(address); std::vector device = processEeprom(i2cBus, address); if (!device.empty()) { devices->emplace(address, device); } } return foundList; } int getBusFRUs(int file, int first, int last, int bus, std::shared_ptr devices, const bool& powerIsOn, sdbusplus::asio::object_server& objServer) { std::future future = std::async(std::launch::async, [&]() { // NOTE: When reading the devices raw on the bus, it can interfere with // the driver's ability to operate, therefore read eeproms first before // scanning for devices without drivers. Several experiments were run // and it was determined that if there were any devices on the bus // before the eeprom was hit and read, the eeprom driver wouldn't open // while the bus device was open. An experiment was not performed to see // if this issue was resolved if the i2c bus device was closed, but // hexdumps of the eeprom later were successful. // Scan for i2c eeproms loaded on this bus. std::set skipList = findI2CEeproms(bus, devices); std::set& failedItems = failedAddresses[bus]; std::set& foundItems = fruAddresses[bus]; foundItems.clear(); auto busFind = busBlocklist.find(bus); if (busFind != busBlocklist.end()) { if (busFind->second != std::nullopt) { for (const auto& address : *(busFind->second)) { skipList.insert(address); } } } std::set* rootFailures = nullptr; int rootBus = getRootBus(bus); if (rootBus >= 0) { auto rootBusFind = busBlocklist.find(rootBus); if (rootBusFind != busBlocklist.end()) { if (rootBusFind->second != std::nullopt) { for (const auto& rootAddress : *(rootBusFind->second)) { skipList.insert(rootAddress); } } } rootFailures = &(failedAddresses[rootBus]); foundItems = fruAddresses[rootBus]; } constexpr int startSkipTargetAddr = 0; constexpr int endSkipTargetAddr = 12; for (int ii = first; ii <= last; ii++) { if (foundItems.find(ii) != foundItems.end()) { continue; } if (skipList.find(ii) != skipList.end()) { continue; } // skipping since no device is present in this range if (ii >= startSkipTargetAddr && ii <= endSkipTargetAddr) { continue; } // Set target address if (ioctl(file, I2C_SLAVE, ii) < 0) { std::cerr << "device at bus " << bus << " address " << ii << " busy\n"; continue; } // probe if (i2c_smbus_read_byte(file) < 0) { continue; } if (debug) { std::cout << "something at bus " << bus << " addr " << ii << "\n"; } makeProbeInterface(bus, ii, objServer); if (failedItems.find(ii) != failedItems.end()) { // if we failed to read it once, unlikely we can read it later continue; } if (rootFailures != nullptr) { if (rootFailures->find(ii) != rootFailures->end()) { continue; } } /* Check for Device type if it is 8 bit or 16 bit */ std::optional is16Bit = isDevice16Bit(file); if (!is16Bit.has_value()) { std::cerr << "failed to read bus " << bus << " address " << ii << "\n"; if (powerIsOn) { failedItems.insert(ii); } continue; } bool is16BitBool{*is16Bit}; auto readFunc = [is16BitBool, file, ii](off_t offset, size_t length, uint8_t* outbuf) { return readData(is16BitBool, false, file, ii, offset, length, outbuf); }; FRUReader reader(std::move(readFunc)); std::string errorMessage = "bus " + std::to_string(bus) + " address " + std::to_string(ii); std::pair, bool> pair = readFRUContents(reader, errorMessage); const bool foundHeader = pair.second; if (!foundHeader && !is16BitBool) { // certain FRU eeproms require bytewise reading. // otherwise garbage is read. e.g. SuperMicro PWS 920P-SQ auto readFunc = [is16BitBool, file, ii](off_t offset, size_t length, uint8_t* outbuf) { return readData(is16BitBool, true, file, ii, offset, length, outbuf); }; FRUReader readerBytewise(std::move(readFunc)); pair = readFRUContents(readerBytewise, errorMessage); } if (pair.first.empty()) { continue; } devices->emplace(ii, pair.first); fruAddresses[bus].insert(ii); } return 1; }); std::future_status status = future.wait_for(std::chrono::seconds(busTimeoutSeconds)); if (status == std::future_status::timeout) { std::cerr << "Error reading bus " << bus << "\n"; if (powerIsOn) { busBlocklist[bus] = std::nullopt; } close(file); return -1; } close(file); return future.get(); } void loadBlocklist(const char* path) { std::ifstream blocklistStream(path); if (!blocklistStream.good()) { // File is optional. std::cerr << "Cannot open blocklist file.\n\n"; return; } nlohmann::json data = nlohmann::json::parse(blocklistStream, nullptr, false); if (data.is_discarded()) { std::cerr << "Illegal blocklist file detected, cannot validate JSON, " "exiting\n"; std::exit(EXIT_FAILURE); } // It's expected to have at least one field, "buses" that is an array of the // buses by integer. Allow for future options to exclude further aspects, // such as specific addresses or ranges. if (data.type() != nlohmann::json::value_t::object) { std::cerr << "Illegal blocklist, expected to read dictionary\n"; std::exit(EXIT_FAILURE); } // If buses field is missing, that's fine. if (data.count("buses") == 1) { // Parse the buses array after a little validation. auto buses = data.at("buses"); if (buses.type() != nlohmann::json::value_t::array) { // Buses field present but invalid, therefore this is an error. std::cerr << "Invalid contents for blocklist buses field\n"; std::exit(EXIT_FAILURE); } // Catch exception here for type mis-match. try { for (const auto& busIterator : buses) { // If bus and addresses field are missing, that's fine. if (busIterator.contains("bus") && busIterator.contains("addresses")) { auto busData = busIterator.at("bus"); auto bus = busData.get(); auto addressData = busIterator.at("addresses"); auto addresses = addressData.get>(); auto& block = busBlocklist[bus].emplace(); for (const auto& address : addresses) { size_t addressInt = 0; std::from_chars(address.begin() + 2, address.end(), addressInt, 16); block.insert(addressInt); } } else { busBlocklist[busIterator.get()] = std::nullopt; } } } catch (const nlohmann::detail::type_error& e) { // Type mis-match is a critical error. std::cerr << "Invalid bus type: " << e.what() << "\n"; std::exit(EXIT_FAILURE); } } } static void findI2CDevices(const std::vector& i2cBuses, BusMap& busmap, const bool& powerIsOn, sdbusplus::asio::object_server& objServer) { for (const auto& i2cBus : i2cBuses) { int bus = busStrToInt(i2cBus.string()); if (bus < 0) { std::cerr << "Cannot translate " << i2cBus << " to int\n"; continue; } auto busFind = busBlocklist.find(bus); if (busFind != busBlocklist.end()) { if (busFind->second == std::nullopt) { continue; // Skip blocked busses. } } int rootBus = getRootBus(bus); auto rootBusFind = busBlocklist.find(rootBus); if (rootBusFind != busBlocklist.end()) { if (rootBusFind->second == std::nullopt) { continue; } } auto file = open(i2cBus.c_str(), O_RDWR); if (file < 0) { std::cerr << "unable to open i2c device " << i2cBus.string() << "\n"; continue; } unsigned long funcs = 0; if (ioctl(file, I2C_FUNCS, &funcs) < 0) { std::cerr << "Error: Could not get the adapter functionality matrix bus " << bus << "\n"; close(file); continue; } if (((funcs & I2C_FUNC_SMBUS_READ_BYTE) == 0U) || ((I2C_FUNC_SMBUS_READ_I2C_BLOCK) == 0)) { std::cerr << "Error: Can't use SMBus Receive Byte command bus " << bus << "\n"; continue; } auto& device = busmap[bus]; device = std::make_shared(); // i2cdetect by default uses the range 0x03 to 0x77, as // this is what we have tested with, use this range. Could be // changed in future. if (debug) { std::cerr << "Scanning bus " << bus << "\n"; } // fd is closed in this function in case the bus locks up getBusFRUs(file, 0x03, 0x77, bus, device, powerIsOn, objServer); if (debug) { std::cerr << "Done scanning bus " << bus << "\n"; } } } // this class allows an async response after all i2c devices are discovered struct FindDevicesWithCallback : std::enable_shared_from_this { FindDevicesWithCallback(const std::vector& i2cBuses, BusMap& busmap, const bool& powerIsOn, sdbusplus::asio::object_server& objServer, std::function&& callback) : _i2cBuses(i2cBuses), _busMap(busmap), _powerIsOn(powerIsOn), _objServer(objServer), _callback(std::move(callback)) {} ~FindDevicesWithCallback() { _callback(); } void run() { findI2CDevices(_i2cBuses, _busMap, _powerIsOn, _objServer); } const std::vector& _i2cBuses; BusMap& _busMap; const bool& _powerIsOn; sdbusplus::asio::object_server& _objServer; std::function _callback; }; void addFruObjectToDbus( std::vector& device, boost::container::flat_map< std::pair, std::shared_ptr>& dbusInterfaceMap, uint32_t bus, uint32_t address, size_t& unknownBusObjectCount, const bool& powerIsOn, sdbusplus::asio::object_server& objServer, std::shared_ptr& systemBus) { boost::container::flat_map formattedFRU; std::optional optionalProductName = getProductName( device, formattedFRU, bus, address, unknownBusObjectCount); if (!optionalProductName) { std::cerr << "getProductName failed. product name is empty.\n"; return; } std::string productName = "/xyz/openbmc_project/FruDevice/" + optionalProductName.value(); std::optional index = findIndexForFRU(dbusInterfaceMap, productName); if (index.has_value()) { productName += "_"; productName += std::to_string(++(*index)); } std::shared_ptr iface = objServer.add_interface(productName, "xyz.openbmc_project.FruDevice"); dbusInterfaceMap[std::pair(bus, address)] = iface; for (auto& property : formattedFRU) { std::regex_replace(property.second.begin(), property.second.begin(), property.second.end(), nonAsciiRegex, "_"); if (property.second.empty() && property.first != "PRODUCT_ASSET_TAG") { continue; } std::string key = std::regex_replace(property.first, nonAsciiRegex, "_"); if (property.first == "PRODUCT_ASSET_TAG") { std::string propertyName = property.first; iface->register_property( key, property.second + '\0', [bus, address, propertyName, &dbusInterfaceMap, &unknownBusObjectCount, &powerIsOn, &objServer, &systemBus](const std::string& req, std::string& resp) { if (strcmp(req.c_str(), resp.c_str()) != 0) { // call the method which will update if (updateFRUProperty(req, bus, address, propertyName, dbusInterfaceMap, unknownBusObjectCount, powerIsOn, objServer, systemBus)) { resp = req; } else { throw std::invalid_argument( "FRU property update failed."); } } return 1; }); } else if (!iface->register_property(key, property.second + '\0')) { std::cerr << "illegal key: " << key << "\n"; } if (debug) { std::cout << property.first << ": " << property.second << "\n"; } } // baseboard will be 0, 0 iface->register_property("BUS", bus); iface->register_property("ADDRESS", address); iface->initialize(); } static bool readBaseboardFRU(std::vector& baseboardFRU) { // try to read baseboard fru from file std::ifstream baseboardFRUFile(baseboardFruLocation, std::ios::binary); if (baseboardFRUFile.good()) { baseboardFRUFile.seekg(0, std::ios_base::end); size_t fileSize = static_cast(baseboardFRUFile.tellg()); baseboardFRU.resize(fileSize); baseboardFRUFile.seekg(0, std::ios_base::beg); // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) char* charOffset = reinterpret_cast(baseboardFRU.data()); baseboardFRUFile.read(charOffset, fileSize); } else { return false; } return true; } bool writeFRU(uint8_t bus, uint8_t address, const std::vector& fru) { boost::container::flat_map tmp; if (fru.size() > maxFruSize) { std::cerr << "Invalid fru.size() during writeFRU\n"; return false; } // verify legal fru by running it through fru parsing logic if (formatIPMIFRU(fru, tmp) != resCodes::resOK) { std::cerr << "Invalid fru format during writeFRU\n"; return false; } // baseboard fru if (bus == 0 && address == 0) { std::ofstream file(baseboardFruLocation, std::ios_base::binary); if (!file.good()) { std::cerr << "Error opening file " << baseboardFruLocation << "\n"; throw DBusInternalError(); return false; } // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) const char* charOffset = reinterpret_cast(fru.data()); file.write(charOffset, fru.size()); return file.good(); } if (hasEepromFile(bus, address)) { auto path = getEepromPath(bus, address); int eeprom = open(path.c_str(), O_RDWR | O_CLOEXEC); if (eeprom < 0) { std::cerr << "unable to open i2c device " << path << "\n"; throw DBusInternalError(); return false; } ssize_t writtenBytes = write(eeprom, fru.data(), fru.size()); if (writtenBytes < 0) { std::cerr << "unable to write to i2c device " << path << "\n"; close(eeprom); throw DBusInternalError(); return false; } close(eeprom); return true; } std::string i2cBus = "/dev/i2c-" + std::to_string(bus); int file = open(i2cBus.c_str(), O_RDWR | O_CLOEXEC); if (file < 0) { std::cerr << "unable to open i2c device " << i2cBus << "\n"; throw DBusInternalError(); return false; } if (ioctl(file, I2C_SLAVE_FORCE, address) < 0) { std::cerr << "unable to set device address\n"; close(file); throw DBusInternalError(); return false; } constexpr const size_t retryMax = 2; uint16_t index = 0; size_t retries = retryMax; while (index < fru.size()) { if (((index != 0U) && ((index % (maxEepromPageIndex + 1)) == 0)) && (retries == retryMax)) { // The 4K EEPROM only uses the A2 and A1 device address bits // with the third bit being a memory page address bit. if (ioctl(file, I2C_SLAVE_FORCE, ++address) < 0) { std::cerr << "unable to set device address\n"; close(file); throw DBusInternalError(); return false; } } if (i2c_smbus_write_byte_data(file, static_cast(index), fru[index]) < 0) { if ((retries--) == 0U) { std::cerr << "error writing fru: " << strerror(errno) << "\n"; close(file); throw DBusInternalError(); return false; } } else { retries = retryMax; index++; } // most eeproms require 5-10ms between writes std::this_thread::sleep_for(std::chrono::milliseconds(10)); } close(file); return true; } void rescanOneBus( BusMap& busmap, uint16_t busNum, boost::container::flat_map< std::pair, std::shared_ptr>& dbusInterfaceMap, bool dbusCall, size_t& unknownBusObjectCount, const bool& powerIsOn, sdbusplus::asio::object_server& objServer, std::shared_ptr& systemBus) { for (auto device = foundDevices.begin(); device != foundDevices.end();) { if (device->first.first == static_cast(busNum)) { objServer.remove_interface(device->second); device = foundDevices.erase(device); } else { device++; } } fs::path busPath = fs::path("/dev/i2c-" + std::to_string(busNum)); if (!fs::exists(busPath)) { if (dbusCall) { std::cerr << "Unable to access i2c bus " << static_cast(busNum) << "\n"; throw std::invalid_argument("Invalid Bus."); } return; } std::vector i2cBuses; i2cBuses.emplace_back(busPath); auto scan = std::make_shared( i2cBuses, busmap, powerIsOn, objServer, [busNum, &busmap, &dbusInterfaceMap, &unknownBusObjectCount, &powerIsOn, &objServer, &systemBus]() { for (auto busIface = dbusInterfaceMap.begin(); busIface != dbusInterfaceMap.end();) { if (busIface->first.first == static_cast(busNum)) { objServer.remove_interface(busIface->second); busIface = dbusInterfaceMap.erase(busIface); } else { busIface++; } } auto found = busmap.find(busNum); if (found == busmap.end() || found->second == nullptr) { return; } for (auto& device : *(found->second)) { addFruObjectToDbus(device.second, dbusInterfaceMap, static_cast(busNum), device.first, unknownBusObjectCount, powerIsOn, objServer, systemBus); } }); scan->run(); } void rescanBusses( BusMap& busmap, boost::container::flat_map< std::pair, std::shared_ptr>& dbusInterfaceMap, size_t& unknownBusObjectCount, const bool& powerIsOn, sdbusplus::asio::object_server& objServer, std::shared_ptr& systemBus) { static boost::asio::steady_timer timer(io); timer.expires_from_now(std::chrono::seconds(1)); // setup an async wait in case we get flooded with requests timer.async_wait([&](const boost::system::error_code& ec) { if (ec == boost::asio::error::operation_aborted) { return; } if (ec) { std::cerr << "Error in timer: " << ec.message() << "\n"; return; } auto devDir = fs::path("/dev/"); std::vector i2cBuses; boost::container::flat_map busPaths; if (!getI2cDevicePaths(devDir, busPaths)) { std::cerr << "unable to find i2c devices\n"; return; } for (const auto& busPath : busPaths) { i2cBuses.emplace_back(busPath.second); } busmap.clear(); for (auto& [pair, interface] : foundDevices) { objServer.remove_interface(interface); } foundDevices.clear(); auto scan = std::make_shared( i2cBuses, busmap, powerIsOn, objServer, [&]() { for (auto& busIface : dbusInterfaceMap) { objServer.remove_interface(busIface.second); } dbusInterfaceMap.clear(); unknownBusObjectCount = 0; // todo, get this from a more sensable place std::vector baseboardFRU; if (readBaseboardFRU(baseboardFRU)) { // If no device on i2c bus 0, the insertion will happen. auto bus0 = busmap.try_emplace(0, std::make_shared()); bus0.first->second->emplace(0, baseboardFRU); } for (auto& devicemap : busmap) { for (auto& device : *devicemap.second) { addFruObjectToDbus(device.second, dbusInterfaceMap, devicemap.first, device.first, unknownBusObjectCount, powerIsOn, objServer, systemBus); } } }); scan->run(); }); } // Details with example of Asset Tag Update // To find location of Product Info Area asset tag as per FRU specification // 1. Find product Info area starting offset (*8 - as header will be in // multiple of 8 bytes). // 2. Skip 3 bytes of product info area (like format version, area length, // and language code). // 3. Traverse manufacturer name, product name, product version, & product // serial number, by reading type/length code to reach the Asset Tag. // 4. Update the Asset Tag, reposition the product Info area in multiple of // 8 bytes. Update the Product area length and checksum. bool updateFRUProperty( const std::string& updatePropertyReq, uint32_t bus, uint32_t address, const std::string& propertyName, boost::container::flat_map< std::pair, std::shared_ptr>& dbusInterfaceMap, size_t& unknownBusObjectCount, const bool& powerIsOn, sdbusplus::asio::object_server& objServer, std::shared_ptr& systemBus) { size_t updatePropertyReqLen = updatePropertyReq.length(); if (updatePropertyReqLen == 1 || updatePropertyReqLen > 63) { std::cerr << "FRU field data cannot be of 1 char or more than 63 chars. " "Invalid Length " << updatePropertyReqLen << "\n"; return false; } std::vector fruData; if (!getFruData(fruData, bus, address)) { std::cerr << "Failure getting FRU Data \n"; return false; } struct FruArea fruAreaParams {}; if (!findFruAreaLocationAndField(fruData, propertyName, fruAreaParams)) { std::cerr << "findFruAreaLocationAndField failed \n"; return false; } std::vector restFRUAreaFieldsData; if (!copyRestFRUArea(fruData, propertyName, fruAreaParams, restFRUAreaFieldsData)) { std::cerr << "copyRestFRUArea failed \n"; return false; } // Push post update fru areas if any unsigned int nextFRUAreaLoc = 0; for (fruAreas nextFRUArea = fruAreas::fruAreaInternal; nextFRUArea <= fruAreas::fruAreaMultirecord; ++nextFRUArea) { unsigned int fruAreaLoc = fruData[getHeaderAreaFieldOffset(nextFRUArea)] * fruBlockSize; if ((fruAreaLoc > fruAreaParams.restFieldsEnd) && ((nextFRUAreaLoc == 0) || (fruAreaLoc < nextFRUAreaLoc))) { nextFRUAreaLoc = fruAreaLoc; } } std::vector restFRUAreasData; if (nextFRUAreaLoc != 0U) { std::copy_n(fruData.begin() + nextFRUAreaLoc, fruData.size() - nextFRUAreaLoc, std::back_inserter(restFRUAreasData)); } // check FRU area size size_t fruAreaDataSize = ((fruAreaParams.updateFieldLoc - fruAreaParams.start + 1) + restFRUAreaFieldsData.size()); size_t fruAreaAvailableSize = fruAreaParams.size - fruAreaDataSize; if ((updatePropertyReqLen + 1) > fruAreaAvailableSize) { #ifdef ENABLE_FRU_AREA_RESIZE size_t newFRUAreaSize = fruAreaDataSize + updatePropertyReqLen + 1; // round size to 8-byte blocks newFRUAreaSize = ((newFRUAreaSize - 1) / fruBlockSize + 1) * fruBlockSize; size_t newFRUDataSize = fruData.size() + newFRUAreaSize - fruAreaParams.size; fruData.resize(newFRUDataSize); fruAreaParams.size = newFRUAreaSize; fruAreaParams.end = fruAreaParams.start + fruAreaParams.size; #else std::cerr << "FRU field length: " << updatePropertyReqLen + 1 << " should not be greater than available FRU area size: " << fruAreaAvailableSize << "\n"; return false; #endif // ENABLE_FRU_AREA_RESIZE } // write new requested property field length and data constexpr uint8_t newTypeLenMask = 0xC0; fruData[fruAreaParams.updateFieldLoc] = static_cast(updatePropertyReqLen | newTypeLenMask); fruAreaParams.updateFieldLoc++; std::copy(updatePropertyReq.begin(), updatePropertyReq.end(), fruData.begin() + fruAreaParams.updateFieldLoc); // Copy remaining data to main fru area - post updated fru field vector fruAreaParams.restFieldsLoc = fruAreaParams.updateFieldLoc + updatePropertyReqLen; size_t fruAreaDataEnd = fruAreaParams.restFieldsLoc + restFRUAreaFieldsData.size(); std::copy(restFRUAreaFieldsData.begin(), restFRUAreaFieldsData.end(), fruData.begin() + fruAreaParams.restFieldsLoc); // Update final fru with new fru area length and checksum unsigned int nextFRUAreaNewLoc = updateFRUAreaLenAndChecksum( fruData, fruAreaParams.start, fruAreaDataEnd, fruAreaParams.end); #ifdef ENABLE_FRU_AREA_RESIZE ++nextFRUAreaNewLoc; ssize_t nextFRUAreaOffsetDiff = (nextFRUAreaNewLoc - nextFRUAreaLoc) / fruBlockSize; // Append rest FRU Areas if size changed and there were other sections after // updated one if (nextFRUAreaOffsetDiff && nextFRUAreaLoc) { std::copy(restFRUAreasData.begin(), restFRUAreasData.end(), fruData.begin() + nextFRUAreaNewLoc); // Update Common Header for (fruAreas nextFRUArea = fruAreas::fruAreaInternal; nextFRUArea <= fruAreas::fruAreaMultirecord; ++nextFRUArea) { unsigned int fruAreaOffsetField = getHeaderAreaFieldOffset(nextFRUArea); size_t curFRUAreaOffset = fruData[fruAreaOffsetField]; if (curFRUAreaOffset > fruAreaParams.end) { fruData[fruAreaOffsetField] = static_cast( curFRUAreaOffset + nextFRUAreaOffsetDiff); } } // Calculate new checksum std::vector headerFRUData; std::copy_n(fruData.begin(), 7, std::back_inserter(headerFRUData)); size_t checksumVal = calculateChecksum(headerFRUData); fruData[7] = static_cast(checksumVal); // fill zeros if FRU Area size decreased if (nextFRUAreaOffsetDiff < 0) { std::fill(fruData.begin() + nextFRUAreaNewLoc + restFRUAreasData.size(), fruData.end(), 0); } } #else // this is to avoid "unused variable" warning (void)nextFRUAreaNewLoc; #endif // ENABLE_FRU_AREA_RESIZE if (fruData.empty()) { return false; } if (!writeFRU(static_cast(bus), static_cast(address), fruData)) { return false; } // Rescan the bus so that GetRawFru dbus-call fetches updated values rescanBusses(busMap, dbusInterfaceMap, unknownBusObjectCount, powerIsOn, objServer, systemBus); return true; } int main() { auto systemBus = std::make_shared(io); sdbusplus::asio::object_server objServer(systemBus); static size_t unknownBusObjectCount = 0; static bool powerIsOn = false; auto devDir = fs::path("/dev/"); auto matchString = std::string(R"(i2c-\d+$)"); std::vector i2cBuses; if (!findFiles(devDir, matchString, i2cBuses)) { std::cerr << "unable to find i2c devices\n"; return 1; } // check for and load blocklist with initial buses. loadBlocklist(blocklistPath); systemBus->request_name("xyz.openbmc_project.FruDevice"); // this is a map with keys of pair(bus number, address) and values of // the object on dbus boost::container::flat_map, std::shared_ptr> dbusInterfaceMap; std::shared_ptr iface = objServer.add_interface("/xyz/openbmc_project/FruDevice", "xyz.openbmc_project.FruDeviceManager"); iface->register_method("ReScan", [&]() { rescanBusses(busMap, dbusInterfaceMap, unknownBusObjectCount, powerIsOn, objServer, systemBus); }); iface->register_method("ReScanBus", [&](uint16_t bus) { rescanOneBus(busMap, bus, dbusInterfaceMap, true, unknownBusObjectCount, powerIsOn, objServer, systemBus); }); iface->register_method("GetRawFru", getFRUInfo); iface->register_method("WriteFru", [&](const uint16_t bus, const uint8_t address, const std::vector& data) { if (!writeFRU(bus, address, data)) { throw std::invalid_argument("Invalid Arguments."); return; } // schedule rescan on success rescanBusses(busMap, dbusInterfaceMap, unknownBusObjectCount, powerIsOn, objServer, systemBus); }); iface->initialize(); std::function eventHandler = [&](sdbusplus::message_t& message) { std::string objectName; boost::container::flat_map< std::string, std::variant> values; message.read(objectName, values); auto findState = values.find("CurrentHostState"); if (findState != values.end()) { if (std::get(findState->second) == "xyz.openbmc_project.State.Host.HostState.Running") { powerIsOn = true; } } if (powerIsOn) { rescanBusses(busMap, dbusInterfaceMap, unknownBusObjectCount, powerIsOn, objServer, systemBus); } }; sdbusplus::bus::match_t powerMatch = sdbusplus::bus::match_t( static_cast(*systemBus), "type='signal',interface='org.freedesktop.DBus.Properties',path='/xyz/" "openbmc_project/state/" "host0',arg0='xyz.openbmc_project.State.Host'", eventHandler); int fd = inotify_init(); inotify_add_watch(fd, i2CDevLocation, IN_CREATE | IN_MOVED_TO | IN_DELETE); std::array readBuffer{}; // monitor for new i2c devices boost::asio::posix::stream_descriptor dirWatch(io, fd); std::function watchI2cBusses = [&](const boost::system::error_code& ec, std::size_t bytesTransferred) { if (ec) { std::cout << "Callback Error " << ec << "\n"; return; } size_t index = 0; while ((index + sizeof(inotify_event)) <= bytesTransferred) { const char* p = &readBuffer[index]; // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) const auto* iEvent = reinterpret_cast(p); switch (iEvent->mask) { case IN_CREATE: case IN_MOVED_TO: case IN_DELETE: { std::string_view name(&iEvent->name[0], iEvent->len); if (boost::starts_with(name, "i2c")) { int bus = busStrToInt(name); if (bus < 0) { std::cerr << "Could not parse bus " << name << "\n"; continue; } int rootBus = getRootBus(bus); if (rootBus >= 0) { rescanOneBus(busMap, static_cast(rootBus), dbusInterfaceMap, false, unknownBusObjectCount, powerIsOn, objServer, systemBus); } rescanOneBus(busMap, static_cast(bus), dbusInterfaceMap, false, unknownBusObjectCount, powerIsOn, objServer, systemBus); } } break; default: break; } index += sizeof(inotify_event) + iEvent->len; } dirWatch.async_read_some(boost::asio::buffer(readBuffer), watchI2cBusses); }; dirWatch.async_read_some(boost::asio::buffer(readBuffer), watchI2cBusses); // run the initial scan rescanBusses(busMap, dbusInterfaceMap, unknownBusObjectCount, powerIsOn, objServer, systemBus); io.run(); return 0; }