/* // Copyright (c) 2017 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static constexpr bool debug = false; namespace fs = std::filesystem; // The following two structures need to be consistent static constexpr std::array sensorTypes = { "xyz.openbmc_project.Configuration.AspeedFan", "xyz.openbmc_project.Configuration.I2CFan", "xyz.openbmc_project.Configuration.NuvotonFan"}; enum FanTypes { aspeed = 0, i2c, nuvoton, max, }; static_assert(std::tuple_size::value == FanTypes::max, "sensorTypes element number is not equal to FanTypes number"); constexpr const char* redundancyConfiguration = "xyz.openbmc_project.Configuration.FanRedundancy"; static std::regex inputRegex(R"(fan(\d+)_input)"); // todo: power supply fan redundancy std::optional systemRedundancy; FanTypes getFanType(const fs::path& parentPath) { fs::path linkPath = parentPath / "device"; std::string canonical = fs::read_symlink(linkPath); if (boost::ends_with(canonical, "1e786000.pwm-tacho-controller") || boost::ends_with(canonical, "1e610000.pwm-tacho-controller")) { return FanTypes::aspeed; } if (boost::ends_with(canonical, "f0103000.pwm-fan-controller")) { return FanTypes::nuvoton; } // todo: will we need to support other types? return FanTypes::i2c; } void enablePwm(const fs::path& filePath) { std::fstream enableFile(filePath, std::ios::in | std::ios::out); if (!enableFile.good()) { std::cerr << "Error read/write " << filePath << "\n"; return; } std::string regulateMode; std::getline(enableFile, regulateMode); if (regulateMode == "0") { enableFile << 1; } } void createRedundancySensor( const boost::container::flat_map>& sensors, const std::shared_ptr& conn, sdbusplus::asio::object_server& objectServer) { conn->async_method_call( [&objectServer, &sensors](boost::system::error_code& ec, const ManagedObjectType& managedObj) { if (ec) { std::cerr << "Error calling entity manager \n"; return; } for (const auto& pathPair : managedObj) { for (const auto& interfacePair : pathPair.second) { if (interfacePair.first == redundancyConfiguration) { // currently only support one auto findCount = interfacePair.second.find("AllowedFailures"); if (findCount == interfacePair.second.end()) { std::cerr << "Malformed redundancy record \n"; return; } std::vector sensorList; for (const auto& sensor : sensors) { sensorList.push_back( "/xyz/openbmc_project/sensors/fan_tach/" + sensor.second->name); } systemRedundancy.reset(); systemRedundancy.emplace(RedundancySensor( std::get(findCount->second), sensorList, objectServer, pathPair.first)); return; } } } }, "xyz.openbmc_project.EntityManager", "/", "org.freedesktop.DBus.ObjectManager", "GetManagedObjects"); } void createSensors( boost::asio::io_service& io, sdbusplus::asio::object_server& objectServer, boost::container::flat_map>& tachSensors, boost::container::flat_map>& pwmSensors, std::shared_ptr& dbusConnection, const std::shared_ptr>& sensorsChanged, size_t retries = 0) { auto getter = std::make_shared( dbusConnection, std::move([&io, &objectServer, &tachSensors, &pwmSensors, &dbusConnection, sensorsChanged]( const ManagedObjectType& sensorConfigurations) { bool firstScan = sensorsChanged == nullptr; std::vector paths; if (!findFiles(fs::path("/sys/class/hwmon"), R"(fan\d+_input)", paths)) { std::cerr << "No fan sensors in system\n"; return; } // iterate through all found fan sensors, and try to match them with // configuration for (const auto& path : paths) { std::smatch match; std::string pathStr = path.string(); std::regex_search(pathStr, match, inputRegex); std::string indexStr = *(match.begin() + 1); fs::path directory = path.parent_path(); FanTypes fanType = getFanType(directory); // convert to 0 based size_t index = std::stoul(indexStr) - 1; const char* baseType; const SensorData* sensorData = nullptr; const std::string* interfacePath = nullptr; const SensorBaseConfiguration* baseConfiguration = nullptr; for (const std::pair& sensor : sensorConfigurations) { // find the base of the configuration to see if indexes // match auto sensorBaseFind = sensor.second.find(sensorTypes[fanType]); if (sensorBaseFind == sensor.second.end()) { continue; } baseConfiguration = &(*sensorBaseFind); interfacePath = &(sensor.first.str); baseType = sensorTypes[fanType]; auto findIndex = baseConfiguration->second.find("Index"); if (findIndex == baseConfiguration->second.end()) { std::cerr << baseConfiguration->first << " missing index\n"; continue; } unsigned int configIndex = std::visit( VariantToUnsignedIntVisitor(), findIndex->second); if (configIndex != index) { continue; } if (fanType == FanTypes::aspeed || fanType == FanTypes::nuvoton) { // there will be only 1 aspeed or nuvoton sensor object // in sysfs, we found the fan sensorData = &(sensor.second); break; } if (fanType == FanTypes::i2c) { size_t bus = 0; size_t address = 0; std::string link = fs::read_symlink(directory / "device").filename(); size_t findDash = link.find('-'); if (findDash == std::string::npos || link.size() <= findDash + 1) { std::cerr << "Error finding device from symlink"; } bus = std::stoi(link.substr(0, findDash)); address = std::stoi(link.substr(findDash + 1), nullptr, 16); auto findBus = baseConfiguration->second.find("Bus"); auto findAddress = baseConfiguration->second.find("Address"); if (findBus == baseConfiguration->second.end() || findAddress == baseConfiguration->second.end()) { std::cerr << baseConfiguration->first << " missing bus or address\n"; continue; } unsigned int configBus = std::visit( VariantToUnsignedIntVisitor(), findBus->second); unsigned int configAddress = std::visit( VariantToUnsignedIntVisitor(), findAddress->second); if (configBus == bus && configAddress == address) { sensorData = &(sensor.second); break; } } } if (sensorData == nullptr) { std::cerr << "failed to find match for " << path.string() << "\n"; continue; } auto findSensorName = baseConfiguration->second.find("Name"); if (findSensorName == baseConfiguration->second.end()) { std::cerr << "could not determine configuration name for " << path.string() << "\n"; continue; } std::string sensorName = std::get(findSensorName->second); // on rescans, only update sensors we were signaled by auto findSensor = tachSensors.find(sensorName); if (!firstScan && findSensor != tachSensors.end()) { bool found = false; for (auto it = sensorsChanged->begin(); it != sensorsChanged->end(); it++) { if (boost::ends_with(*it, findSensor->second->name)) { sensorsChanged->erase(it); findSensor->second = nullptr; found = true; break; } } if (!found) { continue; } } std::vector sensorThresholds; if (!parseThresholdsFromConfig(*sensorData, sensorThresholds)) { std::cerr << "error populating thresholds for " << sensorName << "\n"; } auto presenceConfig = sensorData->find(baseType + std::string(".Presence")); std::unique_ptr presenceSensor(nullptr); // presence sensors are optional if (presenceConfig != sensorData->end()) { auto findPolarity = presenceConfig->second.find("Polarity"); auto findPinName = presenceConfig->second.find("PinName"); if (findPinName == presenceConfig->second.end() || findPolarity == presenceConfig->second.end()) { std::cerr << "Malformed Presence Configuration\n"; } else { bool inverted = std::get( findPolarity->second) == "Low"; if (auto pinName = std::get_if(&findPinName->second)) { presenceSensor = std::make_unique( *pinName, inverted, io, sensorName); } else { std::cerr << "Malformed Presence pinName for sensor " << sensorName << " \n"; } } } std::optional* redundancy = nullptr; if (fanType == FanTypes::aspeed) { redundancy = &systemRedundancy; } PowerState powerState = PowerState::on; auto findPower = baseConfiguration->second.find("PowerState"); if (findPower != baseConfiguration->second.end()) { auto ptrPower = std::get_if(&(findPower->second)); if (ptrPower) { setReadState(*ptrPower, powerState); } } constexpr double defaultMaxReading = 25000; constexpr double defaultMinReading = 0; auto limits = std::make_pair(defaultMinReading, defaultMaxReading); auto connector = sensorData->find(baseType + std::string(".Connector")); std::optional led; std::string pwmName; fs::path pwmPath; if (connector != sensorData->end()) { auto findPwm = connector->second.find("Pwm"); if (findPwm != connector->second.end()) { fs::path pwmEnableFile = "pwm" + std::to_string(index + 1) + "_enable"; fs::path enablePath = path.parent_path() / pwmEnableFile; enablePwm(enablePath); size_t pwm = std::visit(VariantToUnsignedIntVisitor(), findPwm->second); pwmPath = directory / ("pwm" + std::to_string(pwm + 1)); /* use pwm name override if found in configuration else * use default */ auto findOverride = connector->second.find("PwmName"); if (findOverride != connector->second.end()) { pwmName = std::visit(VariantToStringVisitor(), findOverride->second); } else { pwmName = "Pwm_" + std::to_string(pwm + 1); } } else { std::cerr << "Connector for " << sensorName << " missing pwm!\n"; } auto findLED = connector->second.find("LED"); if (findLED != connector->second.end()) { auto ledName = std::get_if(&(findLED->second)); if (ledName == nullptr) { std::cerr << "Wrong format for LED of " << sensorName << "\n"; } else { led = *ledName; } } } findLimits(limits, baseConfiguration); tachSensors[sensorName] = std::make_unique( path.string(), baseType, objectServer, dbusConnection, std::move(presenceSensor), redundancy, io, sensorName, std::move(sensorThresholds), *interfacePath, limits, powerState, led); if (!pwmPath.empty() && fs::exists(pwmPath) && !pwmSensors.count(pwmPath)) { pwmSensors[pwmPath] = std::make_unique( pwmName, pwmPath, dbusConnection, objectServer, *interfacePath, "Fan"); } } createRedundancySensor(tachSensors, dbusConnection, objectServer); })); getter->getConfiguration( std::vector{sensorTypes.begin(), sensorTypes.end()}, retries); } int main() { boost::asio::io_service io; auto systemBus = std::make_shared(io); systemBus->request_name("xyz.openbmc_project.FanSensor"); sdbusplus::asio::object_server objectServer(systemBus); boost::container::flat_map> tachSensors; boost::container::flat_map> pwmSensors; std::vector> matches; auto sensorsChanged = std::make_shared>(); io.post([&]() { createSensors(io, objectServer, tachSensors, pwmSensors, systemBus, nullptr); }); boost::asio::deadline_timer filterTimer(io); std::function eventHandler = [&](sdbusplus::message::message& message) { if (message.is_method_error()) { std::cerr << "callback method error\n"; return; } sensorsChanged->insert(message.get_path()); // this implicitly cancels the timer filterTimer.expires_from_now(boost::posix_time::seconds(1)); filterTimer.async_wait([&](const boost::system::error_code& ec) { if (ec == boost::asio::error::operation_aborted) { /* we were canceled*/ return; } if (ec) { std::cerr << "timer error\n"; return; } createSensors(io, objectServer, tachSensors, pwmSensors, systemBus, sensorsChanged, 5); }); }; for (const char* type : sensorTypes) { auto match = std::make_unique( static_cast(*systemBus), "type='signal',member='PropertiesChanged',path_namespace='" + std::string(inventoryPath) + "',arg0namespace='" + type + "'", eventHandler); matches.emplace_back(std::move(match)); } // redundancy sensor std::function redundancyHandler = [&tachSensors, &systemBus, &objectServer](sdbusplus::message::message&) { createRedundancySensor(tachSensors, systemBus, objectServer); }; auto match = std::make_unique( static_cast(*systemBus), "type='signal',member='PropertiesChanged',path_namespace='" + std::string(inventoryPath) + "',arg0namespace='" + redundancyConfiguration + "'", std::move(redundancyHandler)); matches.emplace_back(std::move(match)); setupManufacturingModeMatch(*systemBus); io.run(); return 0; }