/* // Copyright (c) 2017 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ #include "PresenceGpio.hpp" #include "PwmSensor.hpp" #include "TachSensor.hpp" #include "Thresholds.hpp" #include "Utils.hpp" #include "VariantVisitors.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace fs = std::filesystem; // The following two structures need to be consistent static auto sensorTypes{std::to_array( {"AspeedFan", "I2CFan", "NuvotonFan", "HPEFan"})}; enum FanTypes { aspeed = 0, i2c, nuvoton, hpe, max, }; static_assert(std::tuple_size::value == FanTypes::max, "sensorTypes element number is not equal to FanTypes number"); constexpr const char* redundancyConfiguration = "xyz.openbmc_project.Configuration.FanRedundancy"; static std::regex inputRegex(R"(fan(\d+)_input)"); // todo: power supply fan redundancy std::optional systemRedundancy; static const std::map compatibleFanTypes = { {"aspeed,ast2400-pwm-tacho", FanTypes::aspeed}, {"aspeed,ast2500-pwm-tacho", FanTypes::aspeed}, {"aspeed,ast2600-pwm-tach", FanTypes::aspeed}, {"nuvoton,npcm750-pwm-fan", FanTypes::nuvoton}, {"nuvoton,npcm845-pwm-fan", FanTypes::nuvoton}, {"hpe,gxp-fan-ctrl", FanTypes::hpe} // add compatible string here for new fan type }; FanTypes getFanType(const fs::path& parentPath) { fs::path linkPath = parentPath / "of_node"; if (!fs::exists(linkPath)) { return FanTypes::i2c; } std::string canonical = fs::canonical(linkPath); std::string compatiblePath = canonical + "/compatible"; std::ifstream compatibleStream(compatiblePath); if (!compatibleStream) { std::cerr << "Error opening " << compatiblePath << "\n"; return FanTypes::i2c; } std::string compatibleString; while (std::getline(compatibleStream, compatibleString)) { compatibleString.pop_back(); // trim EOL before comparisons std::map::const_iterator compatibleIterator = compatibleFanTypes.find(compatibleString); if (compatibleIterator != compatibleFanTypes.end()) { return compatibleIterator->second; } } return FanTypes::i2c; } void enablePwm(const fs::path& filePath) { std::fstream enableFile(filePath, std::ios::in | std::ios::out); if (!enableFile.good()) { std::cerr << "Error read/write " << filePath << "\n"; return; } std::string regulateMode; std::getline(enableFile, regulateMode); if (regulateMode == "0") { enableFile << 1; } } bool findPwmfanPath(unsigned int configPwmfanIndex, fs::path& pwmPath) { /* Search PWM since pwm-fan had separated * PWM from tach directory and 1 channel only*/ std::vector pwmfanPaths; std::string pwnfanDevName("pwm-fan"); pwnfanDevName += std::to_string(configPwmfanIndex); if (!findFiles(fs::path("/sys/class/hwmon"), R"(pwm\d+)", pwmfanPaths)) { std::cerr << "No PWMs are found!\n"; return false; } for (const auto& path : pwmfanPaths) { std::error_code ec; fs::path link = fs::read_symlink(path.parent_path() / "device", ec); if (ec) { std::cerr << "read_symlink() failed: " << ec.message() << " (" << ec.value() << ")\n"; continue; } if (link.filename().string() == pwnfanDevName) { pwmPath = path; return true; } } return false; } bool findPwmPath(const fs::path& directory, unsigned int pwm, fs::path& pwmPath) { std::error_code ec; /* Assuming PWM file is appeared in the same directory as fanX_input */ auto path = directory / ("pwm" + std::to_string(pwm + 1)); bool exists = fs::exists(path, ec); if (ec || !exists) { /* PWM file not exist or error happened */ if (ec) { std::cerr << "exists() failed: " << ec.message() << " (" << ec.value() << ")\n"; } /* try search form pwm-fanX directory */ return findPwmfanPath(pwm, pwmPath); } pwmPath = path; return true; } // The argument to this function should be the fanN_input file that we want to // enable. The function will locate the corresponding fanN_enable file if it // exists. Note that some drivers don't provide this file if the sensors are // always enabled. void enableFanInput(const fs::path& fanInputPath) { std::error_code ec; std::string path(fanInputPath.string()); boost::replace_last(path, "input", "enable"); bool exists = fs::exists(path, ec); if (ec || !exists) { return; } std::fstream enableFile(path, std::ios::out); if (!enableFile.good()) { return; } enableFile << 1; } void createRedundancySensor( const boost::container::flat_map>& sensors, const std::shared_ptr& conn, sdbusplus::asio::object_server& objectServer) { conn->async_method_call( [&objectServer, &sensors](boost::system::error_code& ec, const ManagedObjectType& managedObj) { if (ec) { std::cerr << "Error calling entity manager \n"; return; } for (const auto& [path, interfaces] : managedObj) { for (const auto& [intf, cfg] : interfaces) { if (intf == redundancyConfiguration) { // currently only support one auto findCount = cfg.find("AllowedFailures"); if (findCount == cfg.end()) { std::cerr << "Malformed redundancy record \n"; return; } std::vector sensorList; for (const auto& [name, sensor] : sensors) { sensorList.push_back( "/xyz/openbmc_project/sensors/fan_tach/" + sensor->name); } systemRedundancy.reset(); systemRedundancy.emplace(RedundancySensor( std::get(findCount->second), sensorList, objectServer, path)); return; } } } }, "xyz.openbmc_project.EntityManager", "/xyz/openbmc_project/inventory", "org.freedesktop.DBus.ObjectManager", "GetManagedObjects"); } void createSensors( boost::asio::io_context& io, sdbusplus::asio::object_server& objectServer, boost::container::flat_map>& tachSensors, boost::container::flat_map>& pwmSensors, boost::container::flat_map>& presenceGpios, std::shared_ptr& dbusConnection, const std::shared_ptr>& sensorsChanged, size_t retries = 0) { auto getter = std::make_shared( dbusConnection, [&io, &objectServer, &tachSensors, &pwmSensors, &presenceGpios, &dbusConnection, sensorsChanged](const ManagedObjectType& sensorConfigurations) { bool firstScan = sensorsChanged == nullptr; std::vector paths; if (!findFiles(fs::path("/sys/class/hwmon"), R"(fan\d+_input)", paths)) { std::cerr << "No fan sensors in system\n"; return; } // iterate through all found fan sensors, and try to match them with // configuration for (const auto& path : paths) { std::smatch match; std::string pathStr = path.string(); std::regex_search(pathStr, match, inputRegex); std::string indexStr = *(match.begin() + 1); fs::path directory = path.parent_path(); FanTypes fanType = getFanType(directory); std::string cfgIntf = configInterfaceName(sensorTypes[fanType]); // convert to 0 based size_t index = std::stoul(indexStr) - 1; const char* baseType = nullptr; const SensorData* sensorData = nullptr; const std::string* interfacePath = nullptr; const SensorBaseConfiguration* baseConfiguration = nullptr; for (const auto& [path, cfgData] : sensorConfigurations) { // find the base of the configuration to see if indexes // match auto sensorBaseFind = cfgData.find(cfgIntf); if (sensorBaseFind == cfgData.end()) { continue; } baseConfiguration = &(*sensorBaseFind); interfacePath = &path.str; baseType = sensorTypes[fanType]; auto findIndex = baseConfiguration->second.find("Index"); if (findIndex == baseConfiguration->second.end()) { std::cerr << baseConfiguration->first << " missing index\n"; continue; } unsigned int configIndex = std::visit( VariantToUnsignedIntVisitor(), findIndex->second); if (configIndex != index) { continue; } if (fanType == FanTypes::aspeed || fanType == FanTypes::nuvoton || fanType == FanTypes::hpe) { // there will be only 1 aspeed or nuvoton or hpe sensor // object in sysfs, we found the fan sensorData = &cfgData; break; } if (fanType == FanTypes::i2c) { std::string deviceName = fs::read_symlink(directory / "device").filename(); size_t bus = 0; size_t addr = 0; if (!getDeviceBusAddr(deviceName, bus, addr)) { continue; } auto findBus = baseConfiguration->second.find("Bus"); auto findAddress = baseConfiguration->second.find("Address"); if (findBus == baseConfiguration->second.end() || findAddress == baseConfiguration->second.end()) { std::cerr << baseConfiguration->first << " missing bus or address\n"; continue; } unsigned int configBus = std::visit( VariantToUnsignedIntVisitor(), findBus->second); unsigned int configAddress = std::visit( VariantToUnsignedIntVisitor(), findAddress->second); if (configBus == bus && configAddress == addr) { sensorData = &cfgData; break; } } } if (sensorData == nullptr) { std::cerr << "failed to find match for " << path.string() << "\n"; continue; } auto findSensorName = baseConfiguration->second.find("Name"); if (findSensorName == baseConfiguration->second.end()) { std::cerr << "could not determine configuration name for " << path.string() << "\n"; continue; } std::string sensorName = std::get(findSensorName->second); // on rescans, only update sensors we were signaled by auto findSensor = tachSensors.find(sensorName); if (!firstScan && findSensor != tachSensors.end()) { bool found = false; for (auto it = sensorsChanged->begin(); it != sensorsChanged->end(); it++) { if (it->ends_with(findSensor->second->name)) { sensorsChanged->erase(it); findSensor->second = nullptr; found = true; break; } } if (!found) { continue; } } std::vector sensorThresholds; if (!parseThresholdsFromConfig(*sensorData, sensorThresholds)) { std::cerr << "error populating thresholds for " << sensorName << "\n"; } auto presenceConfig = sensorData->find(cfgIntf + std::string(".Presence")); std::shared_ptr presenceGpio(nullptr); // presence sensors are optional if (presenceConfig != sensorData->end()) { auto findPolarity = presenceConfig->second.find("Polarity"); auto findPinName = presenceConfig->second.find("PinName"); if (findPinName == presenceConfig->second.end() || findPolarity == presenceConfig->second.end()) { std::cerr << "Malformed Presence Configuration\n"; } else { bool inverted = std::get( findPolarity->second) == "Low"; const auto* pinName = std::get_if(&findPinName->second); if (pinName != nullptr) { auto findPresenceGpio = presenceGpios.find(*pinName); if (findPresenceGpio != presenceGpios.end()) { auto p = findPresenceGpio->second.lock(); if (p) { presenceGpio = p; } } if (!presenceGpio) { presenceGpio = std::make_shared( "Fan", sensorName, *pinName, inverted, io); presenceGpios[*pinName] = presenceGpio; } } else { std::cerr << "Malformed Presence pinName for sensor " << sensorName << " \n"; } } } std::optional* redundancy = nullptr; if (fanType == FanTypes::aspeed) { redundancy = &systemRedundancy; } PowerState powerState = getPowerState(baseConfiguration->second); constexpr double defaultMaxReading = 25000; constexpr double defaultMinReading = 0; std::pair limits = std::make_pair(defaultMinReading, defaultMaxReading); auto connector = sensorData->find(cfgIntf + std::string(".Connector")); std::optional led; std::string pwmName; fs::path pwmPath; // The Mutable parameter is optional, defaulting to false bool isValueMutable = false; if (connector != sensorData->end()) { auto findPwm = connector->second.find("Pwm"); if (findPwm != connector->second.end()) { size_t pwm = std::visit(VariantToUnsignedIntVisitor(), findPwm->second); if (!findPwmPath(directory, pwm, pwmPath)) { std::cerr << "Connector for " << sensorName << " no pwm channel found!\n"; continue; } fs::path pwmEnableFile = "pwm" + std::to_string(pwm + 1) + "_enable"; fs::path enablePath = pwmPath.parent_path() / pwmEnableFile; enablePwm(enablePath); /* use pwm name override if found in configuration else * use default */ auto findOverride = connector->second.find("PwmName"); if (findOverride != connector->second.end()) { pwmName = std::visit(VariantToStringVisitor(), findOverride->second); } else { pwmName = "Pwm_" + std::to_string(pwm + 1); } // Check PWM sensor mutability auto findMutable = connector->second.find("Mutable"); if (findMutable != connector->second.end()) { const auto* ptrMutable = std::get_if(&(findMutable->second)); if (ptrMutable != nullptr) { isValueMutable = *ptrMutable; } } } else { std::cerr << "Connector for " << sensorName << " missing pwm!\n"; } auto findLED = connector->second.find("LED"); if (findLED != connector->second.end()) { const auto* ledName = std::get_if(&(findLED->second)); if (ledName == nullptr) { std::cerr << "Wrong format for LED of " << sensorName << "\n"; } else { led = *ledName; } } } findLimits(limits, baseConfiguration); enableFanInput(path); auto& tachSensor = tachSensors[sensorName]; tachSensor = nullptr; tachSensor = std::make_shared( path.string(), baseType, objectServer, dbusConnection, presenceGpio, redundancy, io, sensorName, std::move(sensorThresholds), *interfacePath, limits, powerState, led); tachSensor->setupRead(); if (!pwmPath.empty() && fs::exists(pwmPath) && (pwmSensors.count(pwmPath) == 0U)) { pwmSensors[pwmPath] = std::make_unique( pwmName, pwmPath, dbusConnection, objectServer, *interfacePath, "Fan", isValueMutable); } } createRedundancySensor(tachSensors, dbusConnection, objectServer); }); getter->getConfiguration( std::vector{sensorTypes.begin(), sensorTypes.end()}, retries); } int main() { boost::asio::io_context io; auto systemBus = std::make_shared(io); sdbusplus::asio::object_server objectServer(systemBus, true); objectServer.add_manager("/xyz/openbmc_project/sensors"); objectServer.add_manager("/xyz/openbmc_project/control"); objectServer.add_manager("/xyz/openbmc_project/inventory"); systemBus->request_name("xyz.openbmc_project.FanSensor"); boost::container::flat_map> tachSensors; boost::container::flat_map> pwmSensors; boost::container::flat_map> presenceGpios; auto sensorsChanged = std::make_shared>(); boost::asio::post(io, [&]() { createSensors(io, objectServer, tachSensors, pwmSensors, presenceGpios, systemBus, nullptr); }); boost::asio::steady_timer filterTimer(io); std::function eventHandler = [&](sdbusplus::message_t& message) { if (message.is_method_error()) { std::cerr << "callback method error\n"; return; } sensorsChanged->insert(message.get_path()); // this implicitly cancels the timer filterTimer.expires_after(std::chrono::seconds(1)); filterTimer.async_wait([&](const boost::system::error_code& ec) { if (ec == boost::asio::error::operation_aborted) { /* we were canceled*/ return; } if (ec) { std::cerr << "timer error\n"; return; } createSensors(io, objectServer, tachSensors, pwmSensors, presenceGpios, systemBus, sensorsChanged, 5); }); }; std::vector> matches = setupPropertiesChangedMatches(*systemBus, sensorTypes, eventHandler); // redundancy sensor std::function redundancyHandler = [&tachSensors, &systemBus, &objectServer](sdbusplus::message_t&) { createRedundancySensor(tachSensors, systemBus, objectServer); }; auto match = std::make_unique( static_cast(*systemBus), "type='signal',member='PropertiesChanged',path_namespace='" + std::string(inventoryPath) + "',arg0namespace='" + redundancyConfiguration + "'", std::move(redundancyHandler)); matches.emplace_back(std::move(match)); setupManufacturingModeMatch(*systemBus); io.run(); return 0; }