Lines Matching +full:page +full:- +full:size
10 * Released under the terms of 3-clause BSD License
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->page_type: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
36 * pool->lock
37 * zspage->lock
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
105 * header keeps handle which is 4byte-aligned address so we
113 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
114 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
133 * On systems with 4K page size, this gives 255 size classes! There is a
134 * trader-off here:
135 * - Large number of size classes is potentially wasteful as free page are
137 * - Small number of size classes causes large internal fragmentation
138 * - Probably its better to use specific size classes (empirically
146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 * of ->inuse objects to all objects that page can store). For example,
155 * difference between the least busy page in the group (minimum permitted
156 * number of ->inuse objects) and the most busy page (maximum permitted
157 * number of ->inuse objects) at a reasonable value.
188 * Size of objects stored in this class. Must be multiple
191 int size; member
202 * For every zspage, zspage->freeobj gives head of this list.
210 * It's valid for non-allocated object
254 struct page *first_page;
270 zspage->huge = 1; in SetZsHugePage()
275 return zspage->huge; in ZsHugePage()
300 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, in create_cache()
302 if (!pool->handle_cachep) in create_cache()
305 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), in create_cache()
307 if (!pool->zspage_cachep) { in create_cache()
308 kmem_cache_destroy(pool->handle_cachep); in create_cache()
309 pool->handle_cachep = NULL; in create_cache()
318 kmem_cache_destroy(pool->handle_cachep); in destroy_cache()
319 kmem_cache_destroy(pool->zspage_cachep); in destroy_cache()
324 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, in cache_alloc_handle()
330 kmem_cache_free(pool->handle_cachep, (void *)handle); in cache_free_handle()
335 return kmem_cache_zalloc(pool->zspage_cachep, in cache_alloc_zspage()
341 kmem_cache_free(pool->zspage_cachep, zspage); in cache_free_zspage()
344 /* pool->lock(which owns the handle) synchronizes races */
369 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, in zs_zpool_malloc() argument
372 *handle = zs_malloc(pool, size, gfp); in zs_zpool_malloc()
426 MODULE_ALIAS("zpool-zsmalloc");
429 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
434 static __maybe_unused int is_first_page(struct page *page) in is_first_page() argument
436 return PagePrivate(page); in is_first_page()
439 /* Protected by pool->lock */
442 return zspage->inuse; in get_zspage_inuse()
448 zspage->inuse += val; in mod_zspage_inuse()
451 static inline struct page *get_first_page(struct zspage *zspage) in get_first_page()
453 struct page *first_page = zspage->first_page; in get_first_page()
459 static inline unsigned int get_first_obj_offset(struct page *page) in get_first_obj_offset() argument
461 return page->page_type; in get_first_obj_offset()
464 static inline void set_first_obj_offset(struct page *page, unsigned int offset) in set_first_obj_offset() argument
466 page->page_type = offset; in set_first_obj_offset()
471 return zspage->freeobj; in get_freeobj()
476 zspage->freeobj = obj; in set_freeobj()
483 BUG_ON(zspage->magic != ZSPAGE_MAGIC); in get_zspage_mapping()
485 *fullness = zspage->fullness; in get_zspage_mapping()
486 *class_idx = zspage->class; in get_zspage_mapping()
492 return pool->size_class[zspage->class]; in zspage_class()
499 zspage->class = class_idx; in set_zspage_mapping()
500 zspage->fullness = fullness; in set_zspage_mapping()
504 * zsmalloc divides the pool into various size classes where each
507 * classes depending on its size. This function returns index of the
508 * size class which has chunk size big enough to hold the given size.
510 static int get_size_class_index(int size) in get_size_class_index() argument
514 if (likely(size > ZS_MIN_ALLOC_SIZE)) in get_size_class_index()
515 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, in get_size_class_index()
518 return min_t(int, ZS_SIZE_CLASSES - 1, idx); in get_size_class_index()
524 class->stats.objs[type] += cnt; in class_stat_inc()
530 class->stats.objs[type] -= cnt; in class_stat_dec()
535 return class->stats.objs[type]; in zs_stat_get()
560 struct zs_pool *pool = s->private; in zs_stats_size_show()
569 "class", "size", "10%", "20%", "30%", "40%", in zs_stats_size_show()
576 class = pool->size_class[i]; in zs_stats_size_show()
578 if (class->index != i) in zs_stats_size_show()
581 spin_lock(&pool->lock); in zs_stats_size_show()
583 seq_printf(s, " %5u %5u ", i, class->size); in zs_stats_size_show()
592 spin_unlock(&pool->lock); in zs_stats_size_show()
594 objs_per_zspage = class->objs_per_zspage; in zs_stats_size_show()
596 class->pages_per_zspage; in zs_stats_size_show()
600 class->pages_per_zspage, freeable); in zs_stats_size_show()
629 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); in zs_pool_stat_create()
631 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, in zs_pool_stat_create()
637 debugfs_remove_recursive(pool->stat_dentry); in zs_pool_stat_destroy()
660 * For each size class, zspages are divided into different groups
662 * status of the given page.
669 objs_per_zspage = class->objs_per_zspage; in get_fullness_group()
678 * Take integer division into consideration: a page with one inuse in get_fullness_group()
686 * Each size class maintains various freelists and zspages are assigned
696 list_add(&zspage->list, &class->fullness_list[fullness]); in insert_zspage()
707 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); in remove_zspage()
709 list_del_init(&zspage->list); in remove_zspage()
714 * Each size class maintains zspages in different fullness groups depending
716 * objects, the fullness status of the page can change, for instance, from
718 * checks if such a status change has occurred for the given page and
719 * accordingly moves the page from the list of the old fullness group to that
739 static struct zspage *get_zspage(struct page *page) in get_zspage() argument
741 struct zspage *zspage = (struct zspage *)page_private(page); in get_zspage()
743 BUG_ON(zspage->magic != ZSPAGE_MAGIC); in get_zspage()
747 static struct page *get_next_page(struct page *page) in get_next_page() argument
749 struct zspage *zspage = get_zspage(page); in get_next_page()
754 return (struct page *)page->index; in get_next_page()
758 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
760 * @page: page object resides in zspage
763 static void obj_to_location(unsigned long obj, struct page **page, in obj_to_location() argument
767 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); in obj_to_location()
771 static void obj_to_page(unsigned long obj, struct page **page) in obj_to_page() argument
774 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); in obj_to_page()
778 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
779 * @page: page object resides in zspage
782 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) in location_to_obj() argument
786 obj = page_to_pfn(page) << OBJ_INDEX_BITS; in location_to_obj()
798 static inline bool obj_allocated(struct page *page, void *obj, in obj_allocated() argument
802 struct zspage *zspage = get_zspage(page); in obj_allocated()
805 VM_BUG_ON_PAGE(!is_first_page(page), page); in obj_allocated()
806 handle = page->index; in obj_allocated()
818 static void reset_page(struct page *page) in reset_page() argument
820 __ClearPageMovable(page); in reset_page()
821 ClearPagePrivate(page); in reset_page()
822 set_page_private(page, 0); in reset_page()
823 page_mapcount_reset(page); in reset_page()
824 page->index = 0; in reset_page()
829 struct page *cursor, *fail; in trylock_zspage()
851 struct page *page, *next; in __free_zspage() local
857 assert_spin_locked(&pool->lock); in __free_zspage()
862 next = page = get_first_page(zspage); in __free_zspage()
864 VM_BUG_ON_PAGE(!PageLocked(page), page); in __free_zspage()
865 next = get_next_page(page); in __free_zspage()
866 reset_page(page); in __free_zspage()
867 unlock_page(page); in __free_zspage()
868 dec_zone_page_state(page, NR_ZSPAGES); in __free_zspage()
869 put_page(page); in __free_zspage()
870 page = next; in __free_zspage()
871 } while (page != NULL); in __free_zspage()
875 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); in __free_zspage()
876 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); in __free_zspage()
883 VM_BUG_ON(list_empty(&zspage->list)); in free_zspage()
887 * lock_page. The page locks trylock_zspage got will be released in free_zspage()
904 struct page *page = get_first_page(zspage); in init_zspage() local
906 while (page) { in init_zspage()
907 struct page *next_page; in init_zspage()
911 set_first_obj_offset(page, off); in init_zspage()
913 vaddr = kmap_atomic(page); in init_zspage()
916 while ((off += class->size) < PAGE_SIZE) { in init_zspage()
917 link->next = freeobj++ << OBJ_TAG_BITS; in init_zspage()
918 link += class->size / sizeof(*link); in init_zspage()
923 * page, which must point to the first object on the next in init_zspage()
924 * page (if present) in init_zspage()
926 next_page = get_next_page(page); in init_zspage()
928 link->next = freeobj++ << OBJ_TAG_BITS; in init_zspage()
934 link->next = -1UL << OBJ_TAG_BITS; in init_zspage()
937 page = next_page; in init_zspage()
945 struct page *pages[]) in create_page_chain()
948 struct page *page; in create_page_chain() local
949 struct page *prev_page = NULL; in create_page_chain()
950 int nr_pages = class->pages_per_zspage; in create_page_chain()
954 * 1. all pages are linked together using page->index in create_page_chain()
955 * 2. each sub-page point to zspage using page->private in create_page_chain()
957 * we set PG_private to identify the first page (i.e. no other sub-page in create_page_chain()
961 page = pages[i]; in create_page_chain()
962 set_page_private(page, (unsigned long)zspage); in create_page_chain()
963 page->index = 0; in create_page_chain()
965 zspage->first_page = page; in create_page_chain()
966 SetPagePrivate(page); in create_page_chain()
967 if (unlikely(class->objs_per_zspage == 1 && in create_page_chain()
968 class->pages_per_zspage == 1)) in create_page_chain()
971 prev_page->index = (unsigned long)page; in create_page_chain()
973 prev_page = page; in create_page_chain()
978 * Allocate a zspage for the given size class
985 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; in alloc_zspage()
991 zspage->magic = ZSPAGE_MAGIC; in alloc_zspage()
994 for (i = 0; i < class->pages_per_zspage; i++) { in alloc_zspage()
995 struct page *page; in alloc_zspage() local
997 page = alloc_page(gfp); in alloc_zspage()
998 if (!page) { in alloc_zspage()
999 while (--i >= 0) { in alloc_zspage()
1007 inc_zone_page_state(page, NR_ZSPAGES); in alloc_zspage()
1008 pages[i] = page; in alloc_zspage()
1013 zspage->pool = pool; in alloc_zspage()
1023 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { in find_get_zspage()
1024 zspage = list_first_entry_or_null(&class->fullness_list[i], in find_get_zspage()
1039 if (area->vm_buf) in __zs_cpu_up()
1041 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); in __zs_cpu_up()
1042 if (!area->vm_buf) in __zs_cpu_up()
1043 return -ENOMEM; in __zs_cpu_up()
1049 kfree(area->vm_buf); in __zs_cpu_down()
1050 area->vm_buf = NULL; in __zs_cpu_down()
1054 struct page *pages[2], int off, int size) in __zs_map_object() argument
1058 char *buf = area->vm_buf; in __zs_map_object()
1060 /* disable page faults to match kmap_atomic() return conditions */ in __zs_map_object()
1064 if (area->vm_mm == ZS_MM_WO) in __zs_map_object()
1067 sizes[0] = PAGE_SIZE - off; in __zs_map_object()
1068 sizes[1] = size - sizes[0]; in __zs_map_object()
1070 /* copy object to per-cpu buffer */ in __zs_map_object()
1078 return area->vm_buf; in __zs_map_object()
1082 struct page *pages[2], int off, int size) in __zs_unmap_object() argument
1089 if (area->vm_mm == ZS_MM_RO) in __zs_unmap_object()
1092 buf = area->vm_buf; in __zs_unmap_object()
1094 size -= ZS_HANDLE_SIZE; in __zs_unmap_object()
1097 sizes[0] = PAGE_SIZE - off; in __zs_unmap_object()
1098 sizes[1] = size - sizes[0]; in __zs_unmap_object()
1100 /* copy per-cpu buffer to object */ in __zs_unmap_object()
1109 /* enable page faults to match kunmap_atomic() return conditions */ in __zs_unmap_object()
1133 if (prev->pages_per_zspage == pages_per_zspage && in can_merge()
1134 prev->objs_per_zspage == objs_per_zspage) in can_merge()
1142 return get_zspage_inuse(zspage) == class->objs_per_zspage; in zspage_full()
1151 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1152 * that hold objects of the provided size.
1154 * @size: object size
1159 * provided size.
1161 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) in zs_lookup_class_index() argument
1165 class = pool->size_class[get_size_class_index(size)]; in zs_lookup_class_index()
1167 return class->index; in zs_lookup_class_index()
1173 return atomic_long_read(&pool->pages_allocated); in zs_get_total_pages()
1178 * zs_map_object - get address of allocated object from handle.
1190 * This function returns with preemption and page faults disabled.
1196 struct page *page; in zs_map_object() local
1202 struct page *pages[2]; in zs_map_object()
1206 * Because we use per-cpu mapping areas shared among the in zs_map_object()
1213 spin_lock(&pool->lock); in zs_map_object()
1215 obj_to_location(obj, &page, &obj_idx); in zs_map_object()
1216 zspage = get_zspage(page); in zs_map_object()
1219 * migration cannot move any zpages in this zspage. Here, pool->lock in zs_map_object()
1225 spin_unlock(&pool->lock); in zs_map_object()
1228 off = offset_in_page(class->size * obj_idx); in zs_map_object()
1232 area->vm_mm = mm; in zs_map_object()
1233 if (off + class->size <= PAGE_SIZE) { in zs_map_object()
1234 /* this object is contained entirely within a page */ in zs_map_object()
1235 area->vm_addr = kmap_atomic(page); in zs_map_object()
1236 ret = area->vm_addr + off; in zs_map_object()
1241 pages[0] = page; in zs_map_object()
1242 pages[1] = get_next_page(page); in zs_map_object()
1245 ret = __zs_map_object(area, pages, off, class->size); in zs_map_object()
1257 struct page *page; in zs_unmap_object() local
1265 obj_to_location(obj, &page, &obj_idx); in zs_unmap_object()
1266 zspage = get_zspage(page); in zs_unmap_object()
1268 off = offset_in_page(class->size * obj_idx); in zs_unmap_object()
1271 if (off + class->size <= PAGE_SIZE) in zs_unmap_object()
1272 kunmap_atomic(area->vm_addr); in zs_unmap_object()
1274 struct page *pages[2]; in zs_unmap_object()
1276 pages[0] = page; in zs_unmap_object()
1277 pages[1] = get_next_page(page); in zs_unmap_object()
1280 __zs_unmap_object(area, pages, off, class->size); in zs_unmap_object()
1289 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1293 * The function returns the size of the first huge class - any object of equal
1294 * or bigger size will be stored in zspage consisting of a single physical
1295 * page.
1299 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1315 struct page *m_page; in obj_malloc()
1319 class = pool->size_class[zspage->class]; in obj_malloc()
1323 offset = obj * class->size; in obj_malloc()
1333 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); in obj_malloc()
1336 link->handle = handle; in obj_malloc()
1338 /* record handle to page->index */ in obj_malloc()
1339 zspage->first_page->index = handle; in obj_malloc()
1351 * zs_malloc - Allocate block of given size from pool.
1353 * @size: size of block to allocate
1358 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1360 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) in zs_malloc() argument
1367 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) in zs_malloc()
1368 return (unsigned long)ERR_PTR(-EINVAL); in zs_malloc()
1372 return (unsigned long)ERR_PTR(-ENOMEM); in zs_malloc()
1375 size += ZS_HANDLE_SIZE; in zs_malloc()
1376 class = pool->size_class[get_size_class_index(size)]; in zs_malloc()
1378 /* pool->lock effectively protects the zpage migration */ in zs_malloc()
1379 spin_lock(&pool->lock); in zs_malloc()
1391 spin_unlock(&pool->lock); in zs_malloc()
1396 return (unsigned long)ERR_PTR(-ENOMEM); in zs_malloc()
1399 spin_lock(&pool->lock); in zs_malloc()
1403 set_zspage_mapping(zspage, class->index, newfg); in zs_malloc()
1405 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); in zs_malloc()
1406 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); in zs_malloc()
1412 spin_unlock(&pool->lock); in zs_malloc()
1422 struct page *f_page; in obj_free()
1436 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; in obj_free()
1438 f_page->index = 0; in obj_free()
1442 mod_zspage_inuse(zspage, -1); in obj_free()
1448 struct page *f_page; in zs_free()
1457 * The pool->lock protects the race with zpage's migration in zs_free()
1458 * so it's safe to get the page from handle. in zs_free()
1460 spin_lock(&pool->lock); in zs_free()
1467 obj_free(class->size, obj); in zs_free()
1473 spin_unlock(&pool->lock); in zs_free()
1481 struct page *s_page, *d_page; in zs_object_copy()
1485 int s_size, d_size, size; in zs_object_copy() local
1488 s_size = d_size = class->size; in zs_object_copy()
1493 s_off = offset_in_page(class->size * s_objidx); in zs_object_copy()
1494 d_off = offset_in_page(class->size * d_objidx); in zs_object_copy()
1496 if (s_off + class->size > PAGE_SIZE) in zs_object_copy()
1497 s_size = PAGE_SIZE - s_off; in zs_object_copy()
1499 if (d_off + class->size > PAGE_SIZE) in zs_object_copy()
1500 d_size = PAGE_SIZE - d_off; in zs_object_copy()
1506 size = min(s_size, d_size); in zs_object_copy()
1507 memcpy(d_addr + d_off, s_addr + s_off, size); in zs_object_copy()
1508 written += size; in zs_object_copy()
1510 if (written == class->size) in zs_object_copy()
1513 s_off += size; in zs_object_copy()
1514 s_size -= size; in zs_object_copy()
1515 d_off += size; in zs_object_copy()
1516 d_size -= size; in zs_object_copy()
1531 s_size = class->size - written; in zs_object_copy()
1539 d_size = class->size - written; in zs_object_copy()
1553 struct page *page, int *obj_idx) in find_alloced_obj() argument
1558 void *addr = kmap_atomic(page); in find_alloced_obj()
1560 offset = get_first_obj_offset(page); in find_alloced_obj()
1561 offset += class->size * index; in find_alloced_obj()
1564 if (obj_allocated(page, addr + offset, &handle)) in find_alloced_obj()
1567 offset += class->size; in find_alloced_obj()
1584 struct page *s_page = get_first_page(src_zspage); in migrate_zspage()
1585 struct size_class *class = pool->size_class[src_zspage->class]; in migrate_zspage()
1602 obj_free(class->size, used_obj); in migrate_zspage()
1620 zspage = list_first_entry_or_null(&class->fullness_list[fg], in isolate_src_zspage()
1636 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { in isolate_dst_zspage()
1637 zspage = list_first_entry_or_null(&class->fullness_list[fg], in isolate_dst_zspage()
1649 * putback_zspage - add @zspage into right class's fullness list
1651 * @zspage: target page
1661 set_zspage_mapping(zspage, class->index, fullness); in putback_zspage()
1673 struct page *curr_page, *page; in lock_zspage() local
1678 * lock each page under migrate_read_lock(). Otherwise, the page we lock in lock_zspage()
1680 * the wrong page to unlock, so we must take a reference to the page in lock_zspage()
1685 page = get_first_page(zspage); in lock_zspage()
1686 if (trylock_page(page)) in lock_zspage()
1688 get_page(page); in lock_zspage()
1690 wait_on_page_locked(page); in lock_zspage()
1691 put_page(page); in lock_zspage()
1694 curr_page = page; in lock_zspage()
1695 while ((page = get_next_page(curr_page))) { in lock_zspage()
1696 if (trylock_page(page)) { in lock_zspage()
1697 curr_page = page; in lock_zspage()
1699 get_page(page); in lock_zspage()
1701 wait_on_page_locked(page); in lock_zspage()
1702 put_page(page); in lock_zspage()
1712 rwlock_init(&zspage->lock); in migrate_lock_init()
1715 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) in migrate_read_lock()
1717 read_lock(&zspage->lock); in migrate_read_lock()
1720 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) in migrate_read_unlock()
1722 read_unlock(&zspage->lock); in migrate_read_unlock()
1728 write_lock(&zspage->lock); in migrate_write_lock()
1733 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); in migrate_write_lock_nested()
1738 write_unlock(&zspage->lock); in migrate_write_unlock()
1741 /* Number of isolated subpage for *page migration* in this zspage */
1744 zspage->isolated++; in inc_zspage_isolation()
1749 VM_BUG_ON(zspage->isolated == 0); in dec_zspage_isolation()
1750 zspage->isolated--; in dec_zspage_isolation()
1756 struct page *newpage, struct page *oldpage) in replace_sub_page()
1758 struct page *page; in replace_sub_page() local
1759 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; in replace_sub_page()
1762 page = get_first_page(zspage); in replace_sub_page()
1764 if (page == oldpage) in replace_sub_page()
1767 pages[idx] = page; in replace_sub_page()
1769 } while ((page = get_next_page(page)) != NULL); in replace_sub_page()
1774 newpage->index = oldpage->index; in replace_sub_page()
1778 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) in zs_page_isolate() argument
1784 * Page is locked so zspage couldn't be destroyed. For detail, look at in zs_page_isolate()
1787 VM_BUG_ON_PAGE(PageIsolated(page), page); in zs_page_isolate()
1789 zspage = get_zspage(page); in zs_page_isolate()
1790 pool = zspage->pool; in zs_page_isolate()
1791 spin_lock(&pool->lock); in zs_page_isolate()
1793 spin_unlock(&pool->lock); in zs_page_isolate()
1798 static int zs_page_migrate(struct page *newpage, struct page *page, in zs_page_migrate() argument
1804 struct page *dummy; in zs_page_migrate()
1817 return -EINVAL; in zs_page_migrate()
1819 VM_BUG_ON_PAGE(!PageIsolated(page), page); in zs_page_migrate()
1821 /* The page is locked, so this pointer must remain valid */ in zs_page_migrate()
1822 zspage = get_zspage(page); in zs_page_migrate()
1823 pool = zspage->pool; in zs_page_migrate()
1829 spin_lock(&pool->lock); in zs_page_migrate()
1835 offset = get_first_obj_offset(page); in zs_page_migrate()
1836 s_addr = kmap_atomic(page); in zs_page_migrate()
1846 addr += class->size) { in zs_page_migrate()
1847 if (obj_allocated(page, addr, &handle)) { in zs_page_migrate()
1858 replace_sub_page(class, zspage, newpage, page); in zs_page_migrate()
1864 spin_unlock(&pool->lock); in zs_page_migrate()
1868 if (page_zone(newpage) != page_zone(page)) { in zs_page_migrate()
1869 dec_zone_page_state(page, NR_ZSPAGES); in zs_page_migrate()
1873 reset_page(page); in zs_page_migrate()
1874 put_page(page); in zs_page_migrate()
1879 static void zs_page_putback(struct page *page) in zs_page_putback() argument
1884 VM_BUG_ON_PAGE(!PageIsolated(page), page); in zs_page_putback()
1886 zspage = get_zspage(page); in zs_page_putback()
1887 pool = zspage->pool; in zs_page_putback()
1888 spin_lock(&pool->lock); in zs_page_putback()
1890 spin_unlock(&pool->lock); in zs_page_putback()
1915 class = pool->size_class[i]; in async_free_zspage()
1916 if (class->index != i) in async_free_zspage()
1919 spin_lock(&pool->lock); in async_free_zspage()
1920 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], in async_free_zspage()
1922 spin_unlock(&pool->lock); in async_free_zspage()
1926 list_del(&zspage->list); in async_free_zspage()
1931 class = pool->size_class[class_idx]; in async_free_zspage()
1932 spin_lock(&pool->lock); in async_free_zspage()
1934 spin_unlock(&pool->lock); in async_free_zspage()
1940 schedule_work(&pool->free_work); in kick_deferred_free()
1945 flush_work(&pool->free_work); in zs_flush_migration()
1950 INIT_WORK(&pool->free_work, async_free_zspage); in init_deferred_free()
1955 struct page *page = get_first_page(zspage); in SetZsPageMovable() local
1958 WARN_ON(!trylock_page(page)); in SetZsPageMovable()
1959 __SetPageMovable(page, &zsmalloc_mops); in SetZsPageMovable()
1960 unlock_page(page); in SetZsPageMovable()
1961 } while ((page = get_next_page(page)) != NULL); in SetZsPageMovable()
1981 obj_wasted = obj_allocated - obj_used; in zs_can_compact()
1982 obj_wasted /= class->objs_per_zspage; in zs_can_compact()
1984 return obj_wasted * class->pages_per_zspage; in zs_can_compact()
1998 spin_lock(&pool->lock); in __zs_compact()
2021 pages_freed += class->pages_per_zspage; in __zs_compact()
2026 || spin_is_contended(&pool->lock)) { in __zs_compact()
2031 spin_unlock(&pool->lock); in __zs_compact()
2033 spin_lock(&pool->lock); in __zs_compact()
2046 spin_unlock(&pool->lock); in __zs_compact()
2058 * Pool compaction is performed under pool->lock so it is basically in zs_compact()
2059 * single-threaded. Having more than one thread in __zs_compact() in zs_compact()
2060 * will increase pool->lock contention, which will impact other in zs_compact()
2061 * zsmalloc operations that need pool->lock. in zs_compact()
2063 if (atomic_xchg(&pool->compaction_in_progress, 1)) in zs_compact()
2066 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { in zs_compact()
2067 class = pool->size_class[i]; in zs_compact()
2068 if (class->index != i) in zs_compact()
2072 atomic_long_add(pages_freed, &pool->stats.pages_compacted); in zs_compact()
2073 atomic_set(&pool->compaction_in_progress, 0); in zs_compact()
2081 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); in zs_pool_stats()
2111 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { in zs_shrinker_count()
2112 class = pool->size_class[i]; in zs_shrinker_count()
2113 if (class->index != i) in zs_shrinker_count()
2124 unregister_shrinker(&pool->shrinker); in zs_unregister_shrinker()
2129 pool->shrinker.scan_objects = zs_shrinker_scan; in zs_register_shrinker()
2130 pool->shrinker.count_objects = zs_shrinker_count; in zs_register_shrinker()
2131 pool->shrinker.batch = 0; in zs_register_shrinker()
2132 pool->shrinker.seeks = DEFAULT_SEEKS; in zs_register_shrinker()
2134 return register_shrinker(&pool->shrinker, "mm-zspool:%s", in zs_register_shrinker()
2135 pool->name); in zs_register_shrinker()
2160 * zs_create_pool - Creates an allocation pool to work from.
2180 spin_lock_init(&pool->lock); in zs_create_pool()
2181 atomic_set(&pool->compaction_in_progress, 0); in zs_create_pool()
2183 pool->name = kstrdup(name, GFP_KERNEL); in zs_create_pool()
2184 if (!pool->name) in zs_create_pool()
2191 * Iterate reversely, because, size of size_class that we want to use in zs_create_pool()
2192 * for merging should be larger or equal to current size. in zs_create_pool()
2194 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { in zs_create_pool()
2195 int size; in zs_create_pool() local
2201 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; in zs_create_pool()
2202 if (size > ZS_MAX_ALLOC_SIZE) in zs_create_pool()
2203 size = ZS_MAX_ALLOC_SIZE; in zs_create_pool()
2204 pages_per_zspage = calculate_zspage_chain_size(size); in zs_create_pool()
2205 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; in zs_create_pool()
2209 * so huge_class_size holds the size of the first huge in zs_create_pool()
2215 huge_class_size = size; in zs_create_pool()
2219 * unconditionally adds handle size before it performs in zs_create_pool()
2220 * size class search - so object may be smaller than in zs_create_pool()
2221 * huge class size, yet it still can end up in the huge in zs_create_pool()
2225 huge_class_size -= (ZS_HANDLE_SIZE - 1); in zs_create_pool()
2230 * as alloc/free for that size. Although it is natural that we in zs_create_pool()
2231 * have one size_class for each size, there is a chance that we in zs_create_pool()
2239 pool->size_class[i] = prev_class; in zs_create_pool()
2248 class->size = size; in zs_create_pool()
2249 class->index = i; in zs_create_pool()
2250 class->pages_per_zspage = pages_per_zspage; in zs_create_pool()
2251 class->objs_per_zspage = objs_per_zspage; in zs_create_pool()
2252 pool->size_class[i] = class; in zs_create_pool()
2256 INIT_LIST_HEAD(&class->fullness_list[fullness]); in zs_create_pool()
2292 struct size_class *class = pool->size_class[i]; in zs_destroy_pool()
2297 if (class->index != i) in zs_destroy_pool()
2301 if (list_empty(&class->fullness_list[fg])) in zs_destroy_pool()
2304 pr_err("Class-%d fullness group %d is not empty\n", in zs_destroy_pool()
2305 class->size, fg); in zs_destroy_pool()
2311 kfree(pool->name); in zs_destroy_pool()