Lines Matching +full:fn +full:- +full:keymap
1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
76 if (value > old_val - fuzz && value < old_val + fuzz)
79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
88 if (test_bit(EV_REP, dev->evbit) &&
89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 dev->timer.function) {
91 dev->repeat_key = code;
92 mod_timer(&dev->timer,
93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
99 del_timer(&dev->timer);
105 * dev->event_lock held and interrupts disabled.
110 struct input_handler *handler = handle->handler;
114 if (handler->filter) {
116 if (handler->filter(handle, v->type, v->code, v->value))
122 count = end - vals;
128 if (handler->events)
129 handler->events(handle, vals, count);
130 else if (handler->event)
132 handler->event(handle, v->type, v->code, v->value);
140 * dev->event_lock held and interrupts disabled.
148 lockdep_assert_held(&dev->event_lock);
155 handle = rcu_dereference(dev->grab);
159 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
160 if (handle->open) {
170 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
172 if (v->type == EV_KEY && v->value != 2) {
173 if (v->value)
174 input_start_autorepeat(dev, v->code);
192 struct input_mt *mt = dev->mt;
202 if (mt && *pval >= 0 && *pval < mt->num_slots)
203 mt->slot = *pval;
211 pold = &dev->absinfo[code].value;
213 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
214 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
217 * Bypass filtering for multi-touch events when
225 dev->absinfo[code].fuzz);
234 dev->absinfo[ABS_MT_SLOT].value = mt->slot;
247 /* filter-out events from inhibited devices */
248 if (dev->inhibited)
269 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
271 /* auto-repeat bypasses state updates */
277 if (!!test_bit(code, dev->key) != !!value) {
279 __change_bit(code, dev->key);
286 if (is_event_supported(code, dev->swbit, SW_MAX) &&
287 !!test_bit(code, dev->sw) != !!value) {
289 __change_bit(code, dev->sw);
295 if (is_event_supported(code, dev->absbit, ABS_MAX))
301 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
307 if (is_event_supported(code, dev->mscbit, MSC_MAX))
313 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
314 !!test_bit(code, dev->led) != !!value) {
316 __change_bit(code, dev->led);
322 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
324 if (!!test_bit(code, dev->snd) != !!value)
325 __change_bit(code, dev->snd);
331 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
332 dev->rep[code] = value;
354 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
355 dev->event(dev, type, code, value);
357 if (!dev->vals)
364 v = &dev->vals[dev->num_vals++];
365 v->type = EV_ABS;
366 v->code = ABS_MT_SLOT;
367 v->value = dev->mt->slot;
370 v = &dev->vals[dev->num_vals++];
371 v->type = type;
372 v->code = code;
373 v->value = value;
377 if (dev->num_vals >= 2)
378 input_pass_values(dev, dev->vals, dev->num_vals);
379 dev->num_vals = 0;
386 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
387 } else if (dev->num_vals >= dev->max_vals - 2) {
388 dev->vals[dev->num_vals++] = input_value_sync;
389 input_pass_values(dev, dev->vals, dev->num_vals);
390 dev->num_vals = 0;
399 lockdep_assert_held(&dev->event_lock);
411 * input_event() - report new input event
432 if (is_event_supported(type, dev->evbit, EV_MAX)) {
434 spin_lock_irqsave(&dev->event_lock, flags);
436 spin_unlock_irqrestore(&dev->event_lock, flags);
442 * input_inject_event() - send input event from input handler
455 struct input_dev *dev = handle->dev;
459 if (is_event_supported(type, dev->evbit, EV_MAX)) {
460 spin_lock_irqsave(&dev->event_lock, flags);
463 grab = rcu_dereference(dev->grab);
468 spin_unlock_irqrestore(&dev->event_lock, flags);
474 * input_alloc_absinfo - allocates array of input_absinfo structs
482 if (dev->absinfo)
485 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
486 if (!dev->absinfo) {
487 dev_err(dev->dev.parent ?: &dev->dev,
503 __set_bit(EV_ABS, dev->evbit);
504 __set_bit(axis, dev->absbit);
507 if (!dev->absinfo)
510 absinfo = &dev->absinfo[axis];
511 absinfo->minimum = min;
512 absinfo->maximum = max;
513 absinfo->fuzz = fuzz;
514 absinfo->flat = flat;
519 * input_copy_abs - Copy absinfo from one input_dev to another
527 * This is useful to e.g. setup a pen/stylus input-device for combined
535 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
536 test_bit(src_axis, src->absbit))))
544 if (!src->absinfo)
548 if (!dst->absinfo)
551 dst->absinfo[dst_axis] = src->absinfo[src_axis];
556 * input_grab_device - grabs device for exclusive use
565 struct input_dev *dev = handle->dev;
568 retval = mutex_lock_interruptible(&dev->mutex);
572 if (dev->grab) {
573 retval = -EBUSY;
577 rcu_assign_pointer(dev->grab, handle);
580 mutex_unlock(&dev->mutex);
587 struct input_dev *dev = handle->dev;
590 grabber = rcu_dereference_protected(dev->grab,
591 lockdep_is_held(&dev->mutex));
593 rcu_assign_pointer(dev->grab, NULL);
597 list_for_each_entry(handle, &dev->h_list, d_node)
598 if (handle->open && handle->handler->start)
599 handle->handler->start(handle);
604 * input_release_device - release previously grabbed device
614 struct input_dev *dev = handle->dev;
616 mutex_lock(&dev->mutex);
618 mutex_unlock(&dev->mutex);
623 * input_open_device - open input device
631 struct input_dev *dev = handle->dev;
634 retval = mutex_lock_interruptible(&dev->mutex);
638 if (dev->going_away) {
639 retval = -ENODEV;
643 handle->open++;
645 if (dev->users++ || dev->inhibited) {
653 if (dev->open) {
654 retval = dev->open(dev);
656 dev->users--;
657 handle->open--;
667 if (dev->poller)
668 input_dev_poller_start(dev->poller);
671 mutex_unlock(&dev->mutex);
678 struct input_dev *dev = handle->dev;
681 retval = mutex_lock_interruptible(&dev->mutex);
685 if (dev->flush)
686 retval = dev->flush(dev, file);
688 mutex_unlock(&dev->mutex);
694 * input_close_device - close input device
702 struct input_dev *dev = handle->dev;
704 mutex_lock(&dev->mutex);
708 if (!--dev->users && !dev->inhibited) {
709 if (dev->poller)
710 input_dev_poller_stop(dev->poller);
711 if (dev->close)
712 dev->close(dev);
715 if (!--handle->open) {
724 mutex_unlock(&dev->mutex);
730 * The function must be called with dev->event_lock held.
737 lockdep_assert_held(&dev->event_lock);
739 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
740 for_each_set_bit(code, dev->key, KEY_CNT) {
757 * Mark device as going away. Note that we take dev->mutex here
758 * not to protect access to dev->going_away but rather to ensure
761 mutex_lock(&dev->mutex);
762 dev->going_away = true;
763 mutex_unlock(&dev->mutex);
765 spin_lock_irq(&dev->event_lock);
776 list_for_each_entry(handle, &dev->h_list, d_node)
777 handle->open = 0;
779 spin_unlock_irq(&dev->event_lock);
783 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
784 * @ke: keymap entry containing scancode to be converted.
789 * into scalar form understood by legacy keymap handling methods. These
795 switch (ke->len) {
797 *scancode = *((u8 *)ke->scancode);
801 *scancode = *((u16 *)ke->scancode);
805 *scancode = *((u32 *)ke->scancode);
809 return -EINVAL;
824 switch (dev->keycodesize) {
826 return ((u8 *)dev->keycode)[index];
829 return ((u16 *)dev->keycode)[index];
832 return ((u32 *)dev->keycode)[index];
842 if (!dev->keycodesize)
843 return -EINVAL;
845 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
846 index = ke->index;
853 if (index >= dev->keycodemax)
854 return -EINVAL;
856 ke->keycode = input_fetch_keycode(dev, index);
857 ke->index = index;
858 ke->len = sizeof(index);
859 memcpy(ke->scancode, &index, sizeof(index));
872 if (!dev->keycodesize)
873 return -EINVAL;
875 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
876 index = ke->index;
883 if (index >= dev->keycodemax)
884 return -EINVAL;
886 if (dev->keycodesize < sizeof(ke->keycode) &&
887 (ke->keycode >> (dev->keycodesize * 8)))
888 return -EINVAL;
890 switch (dev->keycodesize) {
892 u8 *k = (u8 *)dev->keycode;
894 k[index] = ke->keycode;
898 u16 *k = (u16 *)dev->keycode;
900 k[index] = ke->keycode;
904 u32 *k = (u32 *)dev->keycode;
906 k[index] = ke->keycode;
912 __clear_bit(*old_keycode, dev->keybit);
913 for (i = 0; i < dev->keycodemax; i++) {
915 __set_bit(*old_keycode, dev->keybit);
922 __set_bit(ke->keycode, dev->keybit);
927 * input_get_keycode - retrieve keycode currently mapped to a given scancode
928 * @dev: input device which keymap is being queried
929 * @ke: keymap entry
932 * keymap. Presently evdev handlers use it.
939 spin_lock_irqsave(&dev->event_lock, flags);
940 retval = dev->getkeycode(dev, ke);
941 spin_unlock_irqrestore(&dev->event_lock, flags);
948 * input_set_keycode - attribute a keycode to a given scancode
949 * @dev: input device which keymap is being updated
950 * @ke: new keymap entry
953 * keymap. Presently keyboard and evdev handlers use it.
962 if (ke->keycode > KEY_MAX)
963 return -EINVAL;
965 spin_lock_irqsave(&dev->event_lock, flags);
967 retval = dev->setkeycode(dev, ke, &old_keycode);
972 __clear_bit(KEY_RESERVED, dev->keybit);
976 * in the keymap anymore
979 dev_warn(dev->dev.parent ?: &dev->dev,
982 } else if (test_bit(EV_KEY, dev->evbit) &&
983 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
984 __test_and_clear_bit(old_keycode, dev->key)) {
998 spin_unlock_irqrestore(&dev->event_lock, flags);
1007 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1008 if (id->bustype != dev->id.bustype)
1011 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1012 if (id->vendor != dev->id.vendor)
1015 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1016 if (id->product != dev->id.product)
1019 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1020 if (id->version != dev->id.version)
1023 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1024 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1025 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1026 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1027 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1028 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1029 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1030 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1031 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1032 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1045 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1047 (!handler->match || handler->match(handler, dev))) {
1062 return -ENODEV;
1064 error = handler->connect(handler, dev, id);
1065 if (error && error != -ENODEV)
1067 handler->name, kobject_name(&dev->dev.kobj), error);
1086 len += snprintf(buf + len, max(buf_size - len, 0),
1122 if (file->f_version != input_devices_state) {
1123 file->f_version = input_devices_state;
1140 union input_seq_state *state = (union input_seq_state *)&seq->private;
1143 /* We need to fit into seq->private pointer */
1144 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1148 state->mutex_acquired = false;
1152 state->mutex_acquired = true;
1164 union input_seq_state *state = (union input_seq_state *)&seq->private;
1166 if (state->mutex_acquired)
1179 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1199 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1203 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1205 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1206 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1208 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1211 list_for_each_entry(handle, &dev->h_list, d_node)
1212 seq_printf(seq, "%s ", handle->name);
1215 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1217 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1218 if (test_bit(EV_KEY, dev->evbit))
1219 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1220 if (test_bit(EV_REL, dev->evbit))
1221 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1222 if (test_bit(EV_ABS, dev->evbit))
1223 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1224 if (test_bit(EV_MSC, dev->evbit))
1225 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1226 if (test_bit(EV_LED, dev->evbit))
1227 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1228 if (test_bit(EV_SND, dev->evbit))
1229 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1230 if (test_bit(EV_FF, dev->evbit))
1231 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1232 if (test_bit(EV_SW, dev->evbit))
1233 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1263 union input_seq_state *state = (union input_seq_state *)&seq->private;
1266 /* We need to fit into seq->private pointer */
1267 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1271 state->mutex_acquired = false;
1275 state->mutex_acquired = true;
1276 state->pos = *pos;
1283 union input_seq_state *state = (union input_seq_state *)&seq->private;
1285 state->pos = *pos + 1;
1292 union input_seq_state *state = (union input_seq_state *)&seq->private;
1294 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1295 if (handler->filter)
1297 if (handler->legacy_minors)
1298 seq_printf(seq, " Minor=%d", handler->minor);
1329 return -ENOMEM;
1345 return -ENOMEM;
1369 input_dev->name ? input_dev->name : ""); \
1386 len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1396 "input:b%04Xv%04Xp%04Xe%04X-",
1397 id->id.bustype, id->id.vendor,
1398 id->id.product, id->id.version);
1400 len += input_print_modalias_bits(buf + len, size - len,
1401 'e', id->evbit, 0, EV_MAX);
1407 space = max(size - (len + 1), 0);
1409 klen = input_print_modalias_bits(buf + len, size - len,
1410 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1423 remainder = full_len - len;
1428 if (remainder <= space - 3) {
1434 for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1444 len += input_print_modalias_bits(buf + len, size - len,
1445 'r', id->relbit, 0, REL_MAX);
1446 len += input_print_modalias_bits(buf + len, size - len,
1447 'a', id->absbit, 0, ABS_MAX);
1448 len += input_print_modalias_bits(buf + len, size - len,
1449 'm', id->mscbit, 0, MSC_MAX);
1450 len += input_print_modalias_bits(buf + len, size - len,
1451 'l', id->ledbit, 0, LED_MAX);
1452 len += input_print_modalias_bits(buf + len, size - len,
1453 's', id->sndbit, 0, SND_MAX);
1454 len += input_print_modalias_bits(buf + len, size - len,
1455 'f', id->ffbit, 0, FF_MAX);
1456 len += input_print_modalias_bits(buf + len, size - len,
1457 'w', id->swbit, 0, SW_MAX);
1486 if (len < PAGE_SIZE - 2)
1487 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1501 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1516 return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1528 return -EINVAL;
1563 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1592 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1593 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1598 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1609 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1621 input_dev->bm##bit, ev##_MAX, \
1669 kfree(dev->poller);
1670 kfree(dev->absinfo);
1671 kfree(dev->vals);
1678 * Input uevent interface - loading event handlers based on
1687 return -ENOMEM;
1689 len = input_print_bitmap(&env->buf[env->buflen - 1],
1690 sizeof(env->buf) - env->buflen,
1692 if (len >= (sizeof(env->buf) - env->buflen))
1693 return -ENOMEM;
1695 env->buflen += len;
1703 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1708 * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1712 * 68 bytes total. Allow extra buffer - 96 bytes
1722 return -ENOMEM;
1724 len = input_print_modalias(&env->buf[env->buflen - 1],
1725 (int)sizeof(env->buf) - env->buflen -
1728 if (len >= ((int)sizeof(env->buf) - env->buflen -
1730 return -ENOMEM;
1732 env->buflen += len;
1762 dev->id.bustype, dev->id.vendor,
1763 dev->id.product, dev->id.version);
1764 if (dev->name)
1765 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1766 if (dev->phys)
1767 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1768 if (dev->uniq)
1769 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1771 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1773 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1774 if (test_bit(EV_KEY, dev->evbit))
1775 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1776 if (test_bit(EV_REL, dev->evbit))
1777 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1778 if (test_bit(EV_ABS, dev->evbit))
1779 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1780 if (test_bit(EV_MSC, dev->evbit))
1781 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1782 if (test_bit(EV_LED, dev->evbit))
1783 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1784 if (test_bit(EV_SND, dev->evbit))
1785 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1786 if (test_bit(EV_FF, dev->evbit))
1787 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1788 if (test_bit(EV_SW, dev->evbit))
1789 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1801 if (!test_bit(EV_##type, dev->evbit)) \
1804 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1805 active = test_bit(i, dev->bits); \
1809 dev->event(dev, EV_##type, i, on ? active : 0); \
1815 if (!dev->event)
1821 if (activate && test_bit(EV_REP, dev->evbit)) {
1822 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1823 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1828 * input_reset_device() - reset/restore the state of input device
1839 mutex_lock(&dev->mutex);
1840 spin_lock_irqsave(&dev->event_lock, flags);
1846 spin_unlock_irqrestore(&dev->event_lock, flags);
1847 mutex_unlock(&dev->mutex);
1853 mutex_lock(&dev->mutex);
1855 if (dev->inhibited)
1858 if (dev->users) {
1859 if (dev->close)
1860 dev->close(dev);
1861 if (dev->poller)
1862 input_dev_poller_stop(dev->poller);
1865 spin_lock_irq(&dev->event_lock);
1870 spin_unlock_irq(&dev->event_lock);
1872 dev->inhibited = true;
1875 mutex_unlock(&dev->mutex);
1883 mutex_lock(&dev->mutex);
1885 if (!dev->inhibited)
1888 if (dev->users) {
1889 if (dev->open) {
1890 ret = dev->open(dev);
1894 if (dev->poller)
1895 input_dev_poller_start(dev->poller);
1898 dev->inhibited = false;
1899 spin_lock_irq(&dev->event_lock);
1901 spin_unlock_irq(&dev->event_lock);
1904 mutex_unlock(&dev->mutex);
1912 spin_lock_irq(&input_dev->event_lock);
1924 spin_unlock_irq(&input_dev->event_lock);
1933 spin_lock_irq(&input_dev->event_lock);
1938 spin_unlock_irq(&input_dev->event_lock);
1947 spin_lock_irq(&input_dev->event_lock);
1956 spin_unlock_irq(&input_dev->event_lock);
1965 spin_lock_irq(&input_dev->event_lock);
1970 spin_unlock_irq(&input_dev->event_lock);
2002 * input_allocate_device - allocate memory for new input device
2012 static atomic_t input_no = ATOMIC_INIT(-1);
2017 dev->dev.type = &input_dev_type;
2018 dev->dev.class = &input_class;
2019 device_initialize(&dev->dev);
2020 mutex_init(&dev->mutex);
2021 spin_lock_init(&dev->event_lock);
2022 timer_setup(&dev->timer, NULL, 0);
2023 INIT_LIST_HEAD(&dev->h_list);
2024 INIT_LIST_HEAD(&dev->node);
2026 dev_set_name(&dev->dev, "input%lu",
2044 return devres->input == data;
2050 struct input_dev *input = devres->input;
2053 __func__, dev_name(&input->dev));
2058 * devm_input_allocate_device - allocate managed input device
2091 input->dev.parent = dev;
2092 input->devres_managed = true;
2094 devres->input = input;
2102 * input_free_device - free memory occupied by input_dev structure
2118 if (dev->devres_managed)
2119 WARN_ON(devres_destroy(dev->dev.parent,
2129 * input_set_timestamp - set timestamp for input events
2144 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2145 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2146 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2152 * input_get_timestamp - get timestamp for input events
2155 * A valid timestamp is a timestamp of non-zero value.
2161 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2164 return dev->timestamp;
2169 * input_set_capability - mark device as capable of a certain event
2175 * bitmap the function also adjusts dev->evbit.
2189 __set_bit(code, dev->keybit);
2193 __set_bit(code, dev->relbit);
2198 __set_bit(code, dev->absbit);
2202 __set_bit(code, dev->mscbit);
2206 __set_bit(code, dev->swbit);
2210 __set_bit(code, dev->ledbit);
2214 __set_bit(code, dev->sndbit);
2218 __set_bit(code, dev->ffbit);
2231 __set_bit(type, dev->evbit);
2241 if (dev->mt) {
2242 mt_slots = dev->mt->num_slots;
2243 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2244 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2245 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2247 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2255 if (test_bit(EV_ABS, dev->evbit))
2256 for_each_set_bit(i, dev->absbit, ABS_CNT)
2259 if (test_bit(EV_REL, dev->evbit))
2260 events += bitmap_weight(dev->relbit, REL_CNT);
2270 if (!test_bit(EV_##type, dev->evbit)) \
2271 memset(dev->bits##bit, 0, \
2272 sizeof(dev->bits##bit)); \
2295 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2296 handle->handler->disconnect(handle);
2297 WARN_ON(!list_empty(&dev->h_list));
2299 del_timer_sync(&dev->timer);
2300 list_del_init(&dev->node);
2306 device_del(&dev->dev);
2312 struct input_dev *input = devres->input;
2315 __func__, dev_name(&input->dev));
2321 * dev->event_lock here to avoid racing with input_event
2329 spin_lock_irqsave(&dev->event_lock, flags);
2331 if (!dev->inhibited &&
2332 test_bit(dev->repeat_key, dev->key) &&
2333 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2336 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2339 if (dev->rep[REP_PERIOD])
2340 mod_timer(&dev->timer, jiffies +
2341 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2344 spin_unlock_irqrestore(&dev->event_lock, flags);
2348 * input_enable_softrepeat - enable software autorepeat
2357 dev->timer.function = input_repeat_key;
2358 dev->rep[REP_DELAY] = delay;
2359 dev->rep[REP_PERIOD] = period;
2365 lockdep_assert_held(&dev->mutex);
2367 return !dev->inhibited && dev->users > 0;
2372 * input_register_device - register device with input core
2387 * that tear down of managed input devices is internally a 2-step process:
2402 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2403 dev_err(&dev->dev,
2404 "Absolute device without dev->absinfo, refusing to register\n");
2405 return -EINVAL;
2408 if (dev->devres_managed) {
2412 return -ENOMEM;
2414 devres->input = dev;
2418 __set_bit(EV_SYN, dev->evbit);
2421 __clear_bit(KEY_RESERVED, dev->keybit);
2423 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2427 if (dev->hint_events_per_packet < packet_size)
2428 dev->hint_events_per_packet = packet_size;
2430 dev->max_vals = dev->hint_events_per_packet + 2;
2431 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2432 if (!dev->vals) {
2433 error = -ENOMEM;
2438 * If delay and period are pre-set by the driver, then autorepeating
2441 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2444 if (!dev->getkeycode)
2445 dev->getkeycode = input_default_getkeycode;
2447 if (!dev->setkeycode)
2448 dev->setkeycode = input_default_setkeycode;
2450 if (dev->poller)
2451 input_dev_poller_finalize(dev->poller);
2453 error = device_add(&dev->dev);
2457 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2459 dev->name ? dev->name : "Unspecified device",
2467 list_add_tail(&dev->node, &input_dev_list);
2476 if (dev->devres_managed) {
2477 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2478 __func__, dev_name(&dev->dev));
2479 devres_add(dev->dev.parent, devres);
2484 device_del(&dev->dev);
2486 kfree(dev->vals);
2487 dev->vals = NULL;
2495 * input_unregister_device - unregister previously registered device
2503 if (dev->devres_managed) {
2504 WARN_ON(devres_destroy(dev->dev.parent,
2521 * input_register_handler - register a new input handler
2537 INIT_LIST_HEAD(&handler->h_list);
2539 list_add_tail(&handler->node, &input_handler_list);
2552 * input_unregister_handler - unregisters an input handler
2564 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2565 handler->disconnect(handle);
2566 WARN_ON(!list_empty(&handler->h_list));
2568 list_del_init(&handler->node);
2577 * input_handler_for_each_handle - handle iterator
2580 * @fn: function to be called for each handle
2582 * Iterate over @bus's list of devices, and call @fn for each, passing
2583 * it @data and stop when @fn returns a non-zero value. The function is
2585 * contexts. The @fn callback is invoked from RCU critical section and
2589 int (*fn)(struct input_handle *, void *))
2596 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2597 retval = fn(handle, data);
2609 * input_register_handle - register a new input handle
2621 struct input_handler *handler = handle->handler;
2622 struct input_dev *dev = handle->dev;
2626 * We take dev->mutex here to prevent race with
2629 error = mutex_lock_interruptible(&dev->mutex);
2637 if (handler->filter)
2638 list_add_rcu(&handle->d_node, &dev->h_list);
2640 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2642 mutex_unlock(&dev->mutex);
2645 * Since we are supposed to be called from ->connect()
2646 * which is mutually exclusive with ->disconnect()
2650 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2652 if (handler->start)
2653 handler->start(handle);
2660 * input_unregister_handle - unregister an input handle
2671 struct input_dev *dev = handle->dev;
2673 list_del_rcu(&handle->h_node);
2676 * Take dev->mutex to prevent race with input_release_device().
2678 mutex_lock(&dev->mutex);
2679 list_del_rcu(&handle->d_node);
2680 mutex_unlock(&dev->mutex);
2687 * input_get_new_minor - allocates a new input minor number
2701 * This function should be called from input handler's ->connect()
2721 * input_free_minor - release previously allocated minor