Lines Matching +full:low +full:- +full:g

2 # Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
50 # /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
136 # While >= 128 data bytes remain (not counting xmm0-7), fold the 128
137 # bytes xmm0-7 into them, storing the result back into xmm0-7.
147 # Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7.
167 add $128-16, len
200 movdqu -16(buf, len), %xmm1
203 # xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes.
209 # xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes.
213 # xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes),
214 # then '16-len' bytes from xmm2 (high-order bytes).
225 # Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC
227 # Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
230 # Fold the high 64 bits into the low 64 bits, while also multiplying by
231 # x^64. This produces a 128-bit value congruent to x^64 * M(x) and
232 # whose low 48 bits are 0.
234 pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x))
236 pxor %xmm0, %xmm7 # + low bits * x^64
238 # Fold the high 32 bits into the low 96 bits. This produces a 96-bit
239 # value congruent to x^64 * M(x) and whose low 48 bits are 0.
243 pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x))
244 pxor %xmm0, %xmm7 # + low bits
246 # Load G(x) and floor(x^48 / G(x)).
251 pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x))
253 pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # *= G(x)
255 pxor %xmm7, %xmm0 # + low 16 nonzero bits
256 # Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0.
288 # G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
290 .quad 0x0000000000006123 # x^(8*128) mod G(x)
291 .quad 0x0000000000002295 # x^(8*128+64) mod G(x)
293 .quad 0x0000000000001069 # x^(4*128) mod G(x)
294 .quad 0x000000000000dd31 # x^(4*128+64) mod G(x)
296 .quad 0x000000000000857d # x^(2*128) mod G(x)
297 .quad 0x0000000000007acc # x^(2*128+64) mod G(x)
299 .quad 0x000000000000a010 # x^(1*128) mod G(x)
300 .quad 0x0000000000001faa # x^(1*128+64) mod G(x)
302 .quad 0x1368000000000000 # x^48 * (x^48 mod G(x))
303 .quad 0x2d56000000000000 # x^48 * (x^80 mod G(x))
305 .quad 0x0000000000018bb7 # G(x)
306 .quad 0x00000001f65a57f8 # floor(x^48 / G(x))
325 # For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len]
327 # 0x80} XOR the index vector to shift right by '16 - len' bytes.