Lines Matching +full:128 +full:a

24 // This software is available to you under a choice of one of two
49 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
69 .arch armv8-a+crypto
141 pmull t8.8h, ad.8b, bd1.8b // E = A*B1
143 pmull t7.8h, ad.8b, bd2.8b // G = A*B2
145 pmull t9.8h, ad.8b, bd3.8b // I = A*B3
146 pmull t3.8h, ad.8b, bd4.8b // K = A*B4
155 pmull2 t8.8h, ad.16b, bd1.16b // E = A*B1
157 pmull2 t7.8h, ad.16b, bd2.16b // G = A*B2
159 pmull2 t9.8h, ad.16b, bd3.16b // I = A*B3
160 pmull2 t3.8h, ad.16b, bd4.16b // K = A*B4
205 pmull \rq\().8h, \ad\().8b, \bd\().8b // D = A*B
207 pmull2 \rq\().8h, \ad\().16b, \bd\().16b // D = A*B
262 // For sizes less than 256 bytes, we can't fold 128 bytes at a time.
268 // Load the first 128 data bytes. Byte swapping is necessary to make
297 // Load the constants for folding across 128 bytes.
301 // Subtract 128 for the 128 data bytes just consumed. Subtract another
302 // 128 to simplify the termination condition of the following loop.
305 // While >= 128 data bytes remain (not counting v0-v7), fold the 128
313 subs len, len, #128
332 // Add 128 to get the correct number of data bytes remaining in 0...127
333 // (not counting v7), following the previous extra subtraction by 128.
336 adds len, len, #(128-16)
361 // do this without needing a fold constant for each possible 'len',
362 // redivide the bytes into a first chunk of 'len' bytes and a second
396 // Reduce the 128-bit value M(x), stored in v7, to the final 16-bit CRC.
405 // x^64. This produces a 128-bit value congruent to x^64 * M(x) and
411 // Fold the high 32 bits into the low 96 bits. This produces a 96-bit
437 // Checksumming a buffer of length 16...255 bytes
483 .section ".rodata", "a"
489 .quad 0x0000000000006123 // x^(8*128) mod G(x)
490 .quad 0x0000000000002295 // x^(8*128+64) mod G(x)
492 .quad 0x0000000000001069 // x^(4*128) mod G(x)
493 .quad 0x000000000000dd31 // x^(4*128+64) mod G(x)
495 .quad 0x000000000000857d // x^(2*128) mod G(x)
496 .quad 0x0000000000007acc // x^(2*128+64) mod G(x)
498 .quad 0x000000000000a010 // x^(1*128) mod G(x)
499 .quad 0x0000000000001faa // x^(1*128+64) mod G(x)