History log of /openbmc/linux/arch/x86/include/asm/cpufeatures.h (Results 26 – 50 of 206)
Revision Date Author Comments
# 3763bf58 22-Mar-2023 Sean Christopherson <seanjc@google.com>

x86/cpufeatures: Redefine synthetic virtual NMI bit as AMD's "real" vNMI

The existing X86_FEATURE_VNMI is a synthetic feature flag that exists
purely to maintain /proc/cpuinfo's ABI, the "real" Inte

x86/cpufeatures: Redefine synthetic virtual NMI bit as AMD's "real" vNMI

The existing X86_FEATURE_VNMI is a synthetic feature flag that exists
purely to maintain /proc/cpuinfo's ABI, the "real" Intel vNMI feature flag
is tracked as VMX_FEATURE_VIRTUAL_NMIS, as the feature is enumerated
through VMX MSRs, not CPUID.

AMD is also gaining virtual NMI support, but in true VMX vs. SVM form,
enumerates support through CPUID, i.e. wants to add real feature flag for
vNMI.

Redefine the syntheic X86_FEATURE_VNMI to AMD's real CPUID bit to avoid
having both X86_FEATURE_VNMI and e.g. X86_FEATURE_AMD_VNMI.

Signed-off-by: Sean Christopherson <seanjc@google.com>

show more ...


# 6449dcb0 12-Mar-2023 Kirill A. Shutemov <kirill.shutemov@linux.intel.com>

x86: CPUID and CR3/CR4 flags for Linear Address Masking

Enumerate Linear Address Masking and provide defines for CR3 and CR4
flags.

The new CONFIG_ADDRESS_MASKING option enables the feature support

x86: CPUID and CR3/CR4 flags for Linear Address Masking

Enumerate Linear Address Masking and provide defines for CR3 and CR4
flags.

The new CONFIG_ADDRESS_MASKING option enables the feature support in
kernel.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/all/20230312112612.31869-4-kirill.shutemov%40linux.intel.com

show more ...


# be8de49b 09-Feb-2023 Tom Lendacky <thomas.lendacky@amd.com>

x86/speculation: Identify processors vulnerable to SMT RSB predictions

Certain AMD processors are vulnerable to a cross-thread return address
predictions bug. When running in SMT mode and one of the

x86/speculation: Identify processors vulnerable to SMT RSB predictions

Certain AMD processors are vulnerable to a cross-thread return address
predictions bug. When running in SMT mode and one of the sibling threads
transitions out of C0 state, the other sibling thread could use return
target predictions from the sibling thread that transitioned out of C0.

The Spectre v2 mitigations cover the Linux kernel, as it fills the RSB
when context switching to the idle thread. However, KVM allows a VMM to
prevent exiting guest mode when transitioning out of C0. A guest could
act maliciously in this situation, so create a new x86 BUG that can be
used to detect if the processor is vulnerable.

Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <91cec885656ca1fcd4f0185ce403a53dd9edecb7.1675956146.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# e7862eda 24-Jan-2023 Kim Phillips <kim.phillips@amd.com>

x86/cpu: Support AMD Automatic IBRS

The AMD Zen4 core supports a new feature called Automatic IBRS.

It is a "set-and-forget" feature that means that, like Intel's Enhanced IBRS,
h/w manages its IBR

x86/cpu: Support AMD Automatic IBRS

The AMD Zen4 core supports a new feature called Automatic IBRS.

It is a "set-and-forget" feature that means that, like Intel's Enhanced IBRS,
h/w manages its IBRS mitigation resources automatically across CPL transitions.

The feature is advertised by CPUID_Fn80000021_EAX bit 8 and is enabled by
setting MSR C000_0080 (EFER) bit 21.

Enable Automatic IBRS by default if the CPU feature is present. It typically
provides greater performance over the incumbent generic retpolines mitigation.

Reuse the SPECTRE_V2_EIBRS spectre_v2_mitigation enum. AMD Automatic IBRS and
Intel Enhanced IBRS have similar enablement. Add NO_EIBRS_PBRSB to
cpu_vuln_whitelist, since AMD Automatic IBRS isn't affected by PBRSB-eIBRS.

The kernel command line option spectre_v2=eibrs is used to select AMD Automatic
IBRS, if available.

Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-8-kim.phillips@amd.com

show more ...


# faabfcb1 24-Jan-2023 Kim Phillips <kim.phillips@amd.com>

x86/cpu, kvm: Add the SMM_CTL MSR not present feature

The SMM_CTL MSR not present feature was being open-coded for KVM.
Add it to its newly added CPUID leaf 0x80000021 EAX proper.

Also drop the bit

x86/cpu, kvm: Add the SMM_CTL MSR not present feature

The SMM_CTL MSR not present feature was being open-coded for KVM.
Add it to its newly added CPUID leaf 0x80000021 EAX proper.

Also drop the bit description comments now the code is more
self-describing.

Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-7-kim.phillips@amd.com

show more ...


# 5b909d4a 24-Jan-2023 Kim Phillips <kim.phillips@amd.com>

x86/cpu, kvm: Add the Null Selector Clears Base feature

The Null Selector Clears Base feature was being open-coded for KVM.
Add it to its newly added native CPUID leaf 0x80000021 EAX proper.

Also d

x86/cpu, kvm: Add the Null Selector Clears Base feature

The Null Selector Clears Base feature was being open-coded for KVM.
Add it to its newly added native CPUID leaf 0x80000021 EAX proper.

Also drop the bit description comments now it's more self-describing.

[ bp: Convert test in check_null_seg_clears_base() too. ]

Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-6-kim.phillips@amd.com

show more ...


# 84168ae7 24-Jan-2023 Kim Phillips <kim.phillips@amd.com>

x86/cpu, kvm: Move X86_FEATURE_LFENCE_RDTSC to its native leaf

The LFENCE always serializing feature bit was defined as scattered
LFENCE_RDTSC and its native leaf bit position open-coded for KVM. A

x86/cpu, kvm: Move X86_FEATURE_LFENCE_RDTSC to its native leaf

The LFENCE always serializing feature bit was defined as scattered
LFENCE_RDTSC and its native leaf bit position open-coded for KVM. Add
it to its newly added CPUID leaf 0x80000021 EAX proper. With
LFENCE_RDTSC in its proper place, the kernel's set_cpu_cap() will
effectively synthesize the feature for KVM going forward.

Also, DE_CFG[1] doesn't need to be set on such CPUs anymore.

[ bp: Massage and merge diff from Sean. ]

Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-5-kim.phillips@amd.com

show more ...


# a9dc9ec5 24-Jan-2023 Kim Phillips <kim.phillips@amd.com>

x86/cpu, kvm: Add the NO_NESTED_DATA_BP feature

The "Processor ignores nested data breakpoints" feature was being
open-coded for KVM. Add the feature to its newly introduced CPUID leaf
0x80000021 E

x86/cpu, kvm: Add the NO_NESTED_DATA_BP feature

The "Processor ignores nested data breakpoints" feature was being
open-coded for KVM. Add the feature to its newly introduced CPUID leaf
0x80000021 EAX proper.

Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-4-kim.phillips@amd.com

show more ...


# 8415a748 10-Jan-2023 Kim Phillips <kim.phillips@amd.com>

x86/cpu, kvm: Add support for CPUID_80000021_EAX

Add support for CPUID leaf 80000021, EAX. The majority of the features will be
used in the kernel and thus a separate leaf is appropriate.

Include K

x86/cpu, kvm: Add support for CPUID_80000021_EAX

Add support for CPUID leaf 80000021, EAX. The majority of the features will be
used in the kernel and thus a separate leaf is appropriate.

Include KVM's reverse_cpuid entry because features are used by VM guests, too.

[ bp: Massage commit message. ]

Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230124163319.2277355-2-kim.phillips@amd.com

show more ...


# f8df91e7 01-Sep-2022 Jim Mattson <jmattson@google.com>

x86/cpufeatures: Add macros for Intel's new fast rep string features

KVM_GET_SUPPORTED_CPUID should reflect these host CPUID bits. The bits
are already cached in word 12. Give the bits X86_FEATURE n

x86/cpufeatures: Add macros for Intel's new fast rep string features

KVM_GET_SUPPORTED_CPUID should reflect these host CPUID bits. The bits
are already cached in word 12. Give the bits X86_FEATURE names, so
that they can be easily referenced. Hide these bits from
/proc/cpuinfo, since the host kernel makes no use of them at present.

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220901211811.2883855-1-jmattson@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>

show more ...


# 78335aac 13-Jan-2023 Babu Moger <babu.moger@amd.com>

x86/cpufeatures: Add Bandwidth Monitoring Event Configuration feature flag

Newer AMD processors support the new feature Bandwidth Monitoring Event
Configuration (BMEC).

The feature support is ident

x86/cpufeatures: Add Bandwidth Monitoring Event Configuration feature flag

Newer AMD processors support the new feature Bandwidth Monitoring Event
Configuration (BMEC).

The feature support is identified via CPUID Fn8000_0020_EBX_x0[3]: EVT_CFG -
Bandwidth Monitoring Event Configuration (BMEC)

The bandwidth monitoring events mbm_total_bytes and mbm_local_bytes are set to
count all the total and local reads/writes, respectively. With the introduction
of slow memory, the two counters are not enough to count all the different types
of memory events. Therefore, BMEC provides the option to configure
mbm_total_bytes and mbm_local_bytes to count the specific type of events.

Each BMEC event has a configuration MSR which contains one field for each
bandwidth type that can be used to configure the bandwidth event to track any
combination of supported bandwidth types. The event will count requests from
every bandwidth type bit that is set in the corresponding configuration
register.

Following are the types of events supported:

==== ========================================================
Bits Description
==== ========================================================
6 Dirty Victims from the QOS domain to all types of memory
5 Reads to slow memory in the non-local NUMA domain
4 Reads to slow memory in the local NUMA domain
3 Non-temporal writes to non-local NUMA domain
2 Non-temporal writes to local NUMA domain
1 Reads to memory in the non-local NUMA domain
0 Reads to memory in the local NUMA domain
==== ========================================================

By default, the mbm_total_bytes configuration is set to 0x7F to count
all the event types and the mbm_local_bytes configuration is set to 0x15 to
count all the local memory events.

Feature description is available in the specification, "AMD64 Technology
Platform Quality of Service Extensions, Revision: 1.03 Publication" at
https://bugzilla.kernel.org/attachment.cgi?id=301365

Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-5-babu.moger@amd.com

show more ...


# f334f723 13-Jan-2023 Babu Moger <babu.moger@amd.com>

x86/cpufeatures: Add Slow Memory Bandwidth Allocation feature flag

Add the new AMD feature X86_FEATURE_SMBA. With it, the QOS enforcement policies
can be applied to external slow memory connected to

x86/cpufeatures: Add Slow Memory Bandwidth Allocation feature flag

Add the new AMD feature X86_FEATURE_SMBA. With it, the QOS enforcement policies
can be applied to external slow memory connected to the host. QOS enforcement is
accomplished by assigning a Class Of Service (COS) to a processor and specifying
allocations or limits for that COS for each resource to be allocated.

This feature is identified by the CPUID function 0x8000_0020_EBX_x0[2]:
L3SBE - L3 external slow memory bandwidth enforcement.

CXL.memory is the only supported "slow" memory device. With SMBA, the hardware
enables bandwidth allocation on the slow memory devices. If there are multiple
slow memory devices in the system, then the throttling logic groups all the slow
sources together and applies the limit on them as a whole.

The presence of the SMBA feature (with CXL.memory) is independent of whether
slow memory device is actually present in the system. If there is no slow memory
in the system, then setting a SMBA limit will have no impact on the performance
of the system.

Presence of CXL memory can be identified by the numactl command:

$numactl -H
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
node 0 size: 63678 MB node 0 free: 59542 MB
node 1 cpus:
node 1 size: 16122 MB
node 1 free: 15627 MB
node distances:
node 0 1
0: 10 50
1: 50 10

CPU list for CXL memory will be empty. The cpu-cxl node distance is greater than
cpu-to-cpu distances. Node 1 has the CXL memory in this case. CXL memory can
also be identified using ACPI SRAT table and memory maps.

Feature description is available in the specification, "AMD64 Technology
Platform Quality of Service Extensions, Revision: 1.03 Publication # 56375
Revision: 1.03 Issue Date: February 2022" at
https://bugzilla.kernel.org/attachment.cgi?id=301365

See also https://www.amd.com/en/support/tech-docs/amd64-technology-platform-quality-service-extensions

Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20230113152039.770054-3-babu.moger@amd.com

show more ...


# 66056947 12-Jan-2023 H. Peter Anvin (Intel) <hpa@zytor.com>

x86/cpufeature: Add the CPU feature bit for LKGS

Add the CPU feature bit for LKGS (Load "Kernel" GS).

LKGS instruction is introduced with Intel FRED (flexible return and
event delivery) specificati

x86/cpufeature: Add the CPU feature bit for LKGS

Add the CPU feature bit for LKGS (Load "Kernel" GS).

LKGS instruction is introduced with Intel FRED (flexible return and
event delivery) specification. Search for the latest FRED spec in most
search engines with this search pattern:

site:intel.com FRED (flexible return and event delivery) specification

LKGS behaves like the MOV to GS instruction except that it loads
the base address into the IA32_KERNEL_GS_BASE MSR instead of the
GS segment’s descriptor cache, which is exactly what Linux kernel
does to load a user level GS base. Thus, with LKGS, there is no
need to SWAPGS away from the kernel GS base.

[ mingo: Minor tweaks to the description. ]

Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230112072032.35626-2-xin3.li@intel.com

show more ...


# a018d2e3 04-Jan-2023 Kan Liang <kan.liang@linux.intel.com>

x86/cpufeatures: Add Architectural PerfMon Extension bit

CPUID.(EAX=07H, ECX=1):EAX[8] indicates whether the Architectural
PerfMon Extension leaf (CPUID leaf 23) is supported.

The "X86_FEATURE_...,

x86/cpufeatures: Add Architectural PerfMon Extension bit

CPUID.(EAX=07H, ECX=1):EAX[8] indicates whether the Architectural
PerfMon Extension leaf (CPUID leaf 23) is supported.

The "X86_FEATURE_..., word 12" is already mirrored from CPUID
"0x00000007:1 (EAX)". Add X86_FEATURE_ARCH_PERFMON_EXT under the
"word 12" section.

The new Architectural PerfMon Extension leaf (CPUID leaf 23) will be
supported in the perf_events subsystem later.

The feature will not appear in /proc/cpuinfo.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230104201349.1451191-4-kan.liang@linux.intel.com

show more ...


# 5e85c4eb 25-Nov-2022 Jiaxi Chen <jiaxi.chen@linux.intel.com>

x86: KVM: Advertise AVX-IFMA CPUID to user space

AVX-IFMA is a new instruction in the latest Intel platform Sierra
Forest. This instruction packed multiplies unsigned 52-bit integers and
adds the lo

x86: KVM: Advertise AVX-IFMA CPUID to user space

AVX-IFMA is a new instruction in the latest Intel platform Sierra
Forest. This instruction packed multiplies unsigned 52-bit integers and
adds the low/high 52-bit products to Qword Accumulators.

The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 23]

AVX-IFMA is on an expected-dense CPUID leaf and some other bits on this
leaf have kernel usages. Given that, define this feature bit like
X86_FEATURE_<name> in kernel. Considering AVX-IFMA itself has no truly
kernel usages and /proc/cpuinfo has too much unreadable flags, hide this
one in /proc/cpuinfo.

Advertise AVX-IFMA to KVM userspace. This is safe because there are no
new VMX controls or additional host enabling required for guests to use
this feature.

Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Message-Id: <20221125125845.1182922-6-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# af2872f6 25-Nov-2022 Chang S. Bae <chang.seok.bae@intel.com>

x86: KVM: Advertise AMX-FP16 CPUID to user space

Latest Intel platform Granite Rapids has introduced a new instruction -
AMX-FP16, which performs dot-products of two FP16 tiles and accumulates
the r

x86: KVM: Advertise AMX-FP16 CPUID to user space

Latest Intel platform Granite Rapids has introduced a new instruction -
AMX-FP16, which performs dot-products of two FP16 tiles and accumulates
the results into a packed single precision tile. AMX-FP16 adds FP16
capability and also allows a FP16 GPU trained model to run faster
without loss of accuracy or added SW overhead.

The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 21]

AMX-FP16 is on an expected-dense CPUID leaf and some other bits on this
leaf have kernel usages. Given that, define this feature bit like
X86_FEATURE_<name> in kernel. Considering AMX-FP16 itself has no truly
kernel usages and /proc/cpuinfo has too much unreadable flags, hide this
one in /proc/cpuinfo.

Advertise AMX-FP16 to KVM userspace. This is safe because there are no
new VMX controls or additional host enabling required for guests to use
this feature.

Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Message-Id: <20221125125845.1182922-5-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# 6a19d7aa 25-Nov-2022 Jiaxi Chen <jiaxi.chen@linux.intel.com>

x86: KVM: Advertise CMPccXADD CPUID to user space

CMPccXADD is a new set of instructions in the latest Intel platform
Sierra Forest. This new instruction set includes a semaphore operation
that can

x86: KVM: Advertise CMPccXADD CPUID to user space

CMPccXADD is a new set of instructions in the latest Intel platform
Sierra Forest. This new instruction set includes a semaphore operation
that can compare and add the operands if condition is met, which can
improve database performance.

The bit definition:
CPUID.(EAX=7,ECX=1):EAX[bit 7]

CMPccXADD is on an expected-dense CPUID leaf and some other bits on this
leaf have kernel usages. Given that, define this feature bit like
X86_FEATURE_<name> in kernel. Considering CMPccXADD itself has no truly
kernel usages and /proc/cpuinfo has too much unreadable flags, hide this
one in /proc/cpuinfo.

Advertise CMPCCXADD to KVM userspace. This is safe because there are no
new VMX controls or additional host enabling required for guests to use
this feature.

Signed-off-by: Jiaxi Chen <jiaxi.chen@linux.intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Message-Id: <20221125125845.1182922-4-jiaxi.chen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>

show more ...


# aaa65d17 15-Nov-2022 Pawan Gupta <pawan.kumar.gupta@linux.intel.com>

x86/tsx: Add a feature bit for TSX control MSR support

Support for the TSX control MSR is enumerated in MSR_IA32_ARCH_CAPABILITIES.
This is different from how other CPU features are enumerated i.e.

x86/tsx: Add a feature bit for TSX control MSR support

Support for the TSX control MSR is enumerated in MSR_IA32_ARCH_CAPABILITIES.
This is different from how other CPU features are enumerated i.e. via
CPUID. Currently, a call to tsx_ctrl_is_supported() is required for
enumerating the feature. In the absence of a feature bit for TSX control,
any code that relies on checking feature bits directly will not work.

In preparation for adding a feature bit check in MSR save/restore
during suspend/resume, set a new feature bit X86_FEATURE_TSX_CTRL when
MSR_IA32_TSX_CTRL is present. Also make tsx_ctrl_is_supported() use the
new feature bit to avoid any overhead of reading the MSR.

[ bp: Remove tsx_ctrl_is_supported(), add room for two more feature
bits in word 11 which are coming up in the next merge window. ]

Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/de619764e1d98afbb7a5fa58424f1278ede37b45.1668539735.git.pawan.kumar.gupta@linux.intel.com

show more ...


# b1599915 06-Nov-2022 Ingo Molnar <mingo@kernel.org>

x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit

Reallocate a soft-cpufeatures bit allocated for call-depth tracking

x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit

Reallocate a soft-cpufeatures bit allocated for call-depth tracking
code, which clashes with this recent KVM/SGX patch being worked on:

KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest

Instead of reallocating cpufeatures bits in evil merges, make the
allocation explicit.

Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>

show more ...


# 16a7fe37 31-Oct-2022 Kai Huang <kai.huang@intel.com>

KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest

The new Asynchronous Exit (AEX) notification mechanism (AEX-notify)
allows one enclave to receive a notification in the ERESUME after

KVM/VMX: Allow exposing EDECCSSA user leaf function to KVM guest

The new Asynchronous Exit (AEX) notification mechanism (AEX-notify)
allows one enclave to receive a notification in the ERESUME after the
enclave exit due to an AEX. EDECCSSA is a new SGX user leaf function
(ENCLU[EDECCSSA]) to facilitate the AEX notification handling. The new
EDECCSSA is enumerated via CPUID(EAX=0x12,ECX=0x0):EAX[11].

Besides Allowing reporting the new AEX-notify attribute to KVM guests,
also allow reporting the new EDECCSSA user leaf function to KVM guests
so the guest can fully utilize the AEX-notify mechanism.

Similar to existing X86_FEATURE_SGX1 and X86_FEATURE_SGX2, introduce a
new scattered X86_FEATURE_SGX_EDECCSSA bit for the new EDECCSSA, and
report it in KVM's supported CPUIDs.

Note, no additional KVM enabling is required to allow the guest to use
EDECCSSA. It's impossible to trap ENCLU (without completely preventing
the guest from using SGX). Advertise EDECCSSA as supported purely so
that userspace doesn't need to special case EDECCSSA, i.e. doesn't need
to manually check host CPUID.

The inability to trap ENCLU also means that KVM can't prevent the guest
from using EDECCSSA, but that virtualization hole is benign as far as
KVM is concerned. EDECCSSA is simply a fancy way to modify internal
enclave state.

More background about how do AEX-notify and EDECCSSA work:

SGX maintains a Current State Save Area Frame (CSSA) for each enclave
thread. When AEX happens, the enclave thread context is saved to the
CSSA and the CSSA is increased by 1. For a normal ERESUME which doesn't
deliver AEX notification, it restores the saved thread context from the
previously saved SSA and decreases the CSSA. If AEX-notify is enabled
for one enclave, the ERESUME acts differently. Instead of restoring the
saved thread context and decreasing the CSSA, it acts like EENTER which
doesn't decrease the CSSA but establishes a clean slate thread context
using the CSSA for the enclave to handle the notification. After some
handling, the enclave must discard the "new-established" SSA and switch
back to the previously saved SSA (upon AEX). Otherwise, the enclave
will run out of SSA space upon further AEXs and eventually fail to run.

To solve this problem, the new EDECCSSA essentially decreases the CSSA.
It can be used by the enclave notification handler to switch back to the
previous saved SSA when needed, i.e. after it handles the notification.

Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Sean Christopherson <seanjc@google.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lore.kernel.org/all/20221101022422.858944-1-kai.huang%40intel.com

show more ...


# 80e4c1cd 15-Sep-2022 Thomas Gleixner <tglx@linutronix.de>

x86/retbleed: Add X86_FEATURE_CALL_DEPTH

Intel SKL CPUs fall back to other predictors when the RSB underflows. The
only microcode mitigation is IBRS which is insanely expensive. It comes
with perfor

x86/retbleed: Add X86_FEATURE_CALL_DEPTH

Intel SKL CPUs fall back to other predictors when the RSB underflows. The
only microcode mitigation is IBRS which is insanely expensive. It comes
with performance drops of up to 30% depending on the workload.

A way less expensive, but nevertheless horrible mitigation is to track the
call depth in software and overeagerly fill the RSB when returns underflow
the software counter.

Provide a configuration symbol and a CPU misfeature bit.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111147.056176424@infradead.org

show more ...


# 257449c6 11-Aug-2022 Sandipan Das <sandipan.das@amd.com>

x86/cpufeatures: Add LbrExtV2 feature bit

CPUID leaf 0x80000022 i.e. ExtPerfMonAndDbg advertises some new performance
monitoring features for AMD processors.

Bit 1 of EAX indicates support for Last

x86/cpufeatures: Add LbrExtV2 feature bit

CPUID leaf 0x80000022 i.e. ExtPerfMonAndDbg advertises some new performance
monitoring features for AMD processors.

Bit 1 of EAX indicates support for Last Branch Record Extension Version 2
(LbrExtV2) features. If found to be set during PMU initialization, the EBX
bits of the same leaf can be used to determine the number of available LBR
entries.

For better utilization of feature words, LbrExtV2 is added as a scattered
feature bit.

[peterz: Rename to AMD_LBR_V2]
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/172d2b0df39306ed77221c45ee1aa62e8ae0548d.1660211399.git.sandipan.das@amd.com

show more ...


# 7df54884 03-Aug-2022 Pawan Gupta <pawan.kumar.gupta@linux.intel.com>

x86/bugs: Add "unknown" reporting for MMIO Stale Data

Older Intel CPUs that are not in the affected processor list for MMIO
Stale Data vulnerabilities currently report "Not affected" in sysfs,
which

x86/bugs: Add "unknown" reporting for MMIO Stale Data

Older Intel CPUs that are not in the affected processor list for MMIO
Stale Data vulnerabilities currently report "Not affected" in sysfs,
which may not be correct. Vulnerability status for these older CPUs is
unknown.

Add known-not-affected CPUs to the whitelist. Report "unknown"
mitigation status for CPUs that are not in blacklist, whitelist and also
don't enumerate MSR ARCH_CAPABILITIES bits that reflect hardware
immunity to MMIO Stale Data vulnerabilities.

Mitigation is not deployed when the status is unknown.

[ bp: Massage, fixup. ]

Fixes: 8d50cdf8b834 ("x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data")
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Suggested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/a932c154772f2121794a5f2eded1a11013114711.1657846269.git.pawan.kumar.gupta@linux.intel.com

show more ...


# 2b129932 02-Aug-2022 Daniel Sneddon <daniel.sneddon@linux.intel.com>

x86/speculation: Add RSB VM Exit protections

tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB

x86/speculation: Add RSB VM Exit protections

tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.

== Background ==

Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.

To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced. eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.

== Problem ==

Here's a simplification of how guests are run on Linux' KVM:

void run_kvm_guest(void)
{
// Prepare to run guest
VMRESUME();
// Clean up after guest runs
}

The execution flow for that would look something like this to the
processor:

1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()

Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:

* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.

* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".

IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.

However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.

Balanced CALL/RET instruction pairs such as in step #5 are not affected.

== Solution ==

The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.

However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.

Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.

The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.

In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.

There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.

[ bp: Massage, incorporate review comments from Andy Cooper. ]

Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>

show more ...


# 28a99e95 18-Jul-2022 Peter Zijlstra <peterz@infradead.org>

x86/amd: Use IBPB for firmware calls

On AMD IBRS does not prevent Retbleed; as such use IBPB before a
firmware call to flush the branch history state.

And because in order to do an EFI call, the ke

x86/amd: Use IBPB for firmware calls

On AMD IBRS does not prevent Retbleed; as such use IBPB before a
firmware call to flush the branch history state.

And because in order to do an EFI call, the kernel maps a whole lot of
the kernel page table into the EFI page table, do an IBPB just in case
in order to prevent the scenario of poisoning the BTB and causing an EFI
call using the unprotected RET there.

[ bp: Massage. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220715194550.793957-1-cascardo@canonical.com

show more ...


123456789