History log of /openbmc/linux/arch/x86/include/asm/cpufeatures.h (Results 101 – 125 of 206)
Revision Date Author Comments
# 077168e2 21-Mar-2020 Wei Huang <wei.huang2@amd.com>

x86/mce/amd: Add PPIN support for AMD MCE

Newer AMD CPUs support a feature called protected processor
identification number (PPIN). This feature can be detected via
CPUID_Fn80000008_EBX[23].

Howeve

x86/mce/amd: Add PPIN support for AMD MCE

Newer AMD CPUs support a feature called protected processor
identification number (PPIN). This feature can be detected via
CPUID_Fn80000008_EBX[23].

However, CPUID alone is not enough to read the processor identification
number - MSR_AMD_PPIN_CTL also needs to be configured properly. If, for
any reason, MSR_AMD_PPIN_CTL[PPIN_EN] can not be turned on, such as
disabled in BIOS, the CPU capability bit X86_FEATURE_AMD_PPIN needs to
be cleared.

When the X86_FEATURE_AMD_PPIN capability is available, the
identification number is issued together with the MCE error info in
order to keep track of the source of MCE errors.

[ bp: Massage. ]

Co-developed-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200321193800.3666964-1-wei.huang2@amd.com

show more ...


# 753039ef 11-Mar-2020 Kim Phillips <kim.phillips@amd.com>

x86/cpu/amd: Call init_amd_zn() om Family 19h processors too

Family 19h CPUs are Zen-based and still share most architectural
features with Family 17h CPUs, and therefore still need to call
init_amd

x86/cpu/amd: Call init_amd_zn() om Family 19h processors too

Family 19h CPUs are Zen-based and still share most architectural
features with Family 17h CPUs, and therefore still need to call
init_amd_zn() e.g., to set the RECLAIM_DISTANCE override.

init_amd_zn() also sets X86_FEATURE_ZEN, which today is only used
in amd_set_core_ssb_state(), which isn't called on some late
model Family 17h CPUs, nor on any Family 19h CPUs:
X86_FEATURE_AMD_SSBD replaces X86_FEATURE_LS_CFG_SSBD on those
later model CPUs, where the SSBD mitigation is done via the
SPEC_CTRL MSR instead of the LS_CFG MSR.

Family 19h CPUs also don't have the erratum where the CPB feature
bit isn't set, but that code can stay unchanged and run safely
on Family 19h.

Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200311191451.13221-1-kim.phillips@amd.com

show more ...


# 6650cdd9 26-Jan-2020 Peter Zijlstra (Intel) <peterz@infradead.org>

x86/split_lock: Enable split lock detection by kernel

A split-lock occurs when an atomic instruction operates on data that spans
two cache lines. In order to maintain atomicity the core takes a glob

x86/split_lock: Enable split lock detection by kernel

A split-lock occurs when an atomic instruction operates on data that spans
two cache lines. In order to maintain atomicity the core takes a global bus
lock.

This is typically >1000 cycles slower than an atomic operation within a
cache line. It also disrupts performance on other cores (which must wait
for the bus lock to be released before their memory operations can
complete). For real-time systems this may mean missing deadlines. For other
systems it may just be very annoying.

Some CPUs have the capability to raise an #AC trap when a split lock is
attempted.

Provide a command line option to give the user choices on how to handle
this:

split_lock_detect=
off - not enabled (no traps for split locks)
warn - warn once when an application does a
split lock, but allow it to continue
running.
fatal - Send SIGBUS to applications that cause split lock

On systems that support split lock detection the default is "warn". Note
that if the kernel hits a split lock in any mode other than "off" it will
OOPs.

One implementation wrinkle is that the MSR to control the split lock
detection is per-core, not per thread. This might result in some short
lived races on HT systems in "warn" mode if Linux tries to enable on one
thread while disabling on the other. Race analysis by Sean Christopherson:

- Toggling of split-lock is only done in "warn" mode. Worst case
scenario of a race is that a misbehaving task will generate multiple
#AC exceptions on the same instruction. And this race will only occur
if both siblings are running tasks that generate split-lock #ACs, e.g.
a race where sibling threads are writing different values will only
occur if CPUx is disabling split-lock after an #AC and CPUy is
re-enabling split-lock after *its* previous task generated an #AC.
- Transitioning between off/warn/fatal modes at runtime isn't supported
and disabling is tracked per task, so hardware will always reach a steady
state that matches the configured mode. I.e. split-lock is guaranteed to
be enabled in hardware once all _TIF_SLD threads have been scheduled out.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Co-developed-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20200126200535.GB30377@agluck-desk2.amr.corp.intel.com

show more ...


# 85c17291 20-Dec-2019 Sean Christopherson <sean.j.christopherson@intel.com>

x86/cpufeatures: Add flag to track whether MSR IA32_FEAT_CTL is configured

Add a new feature flag, X86_FEATURE_MSR_IA32_FEAT_CTL, to track whether
IA32_FEAT_CTL has been initialized. This will allo

x86/cpufeatures: Add flag to track whether MSR IA32_FEAT_CTL is configured

Add a new feature flag, X86_FEATURE_MSR_IA32_FEAT_CTL, to track whether
IA32_FEAT_CTL has been initialized. This will allow KVM, and any future
subsystems that depend on IA32_FEAT_CTL, to rely purely on cpufeatures
to query platform support, e.g. allows a future patch to remove KVM's
manual IA32_FEAT_CTL MSR checks.

Various features (on platforms that support IA32_FEAT_CTL) are dependent
on IA32_FEAT_CTL being configured and locked, e.g. VMX and LMCE. The
MSR is always configured during boot, but only if the CPU vendor is
recognized by the kernel. Because CPUID doesn't incorporate the current
IA32_FEAT_CTL value in its reporting of relevant features, it's possible
for a feature to be reported as supported in cpufeatures but not truly
enabled, e.g. if the CPU supports VMX but the kernel doesn't recognize
the CPU.

As a result, without the flag, KVM would see VMX as supported even if
IA32_FEAT_CTL hasn't been initialized, and so would need to manually
read the MSR and check the various enabling bits to avoid taking an
unexpected #GP on VMXON.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-14-sean.j.christopherson@intel.com

show more ...


# f444a5ff 16-Dec-2019 Tony Luck <tony.luck@intel.com>

x86/cpufeatures: Add support for fast short REP; MOVSB

>From the Intel Optimization Reference Manual:

3.7.6.1 Fast Short REP MOVSB
Beginning with processors based on Ice Lake Client microarchitectu

x86/cpufeatures: Add support for fast short REP; MOVSB

>From the Intel Optimization Reference Manual:

3.7.6.1 Fast Short REP MOVSB
Beginning with processors based on Ice Lake Client microarchitecture,
REP MOVSB performance of short operations is enhanced. The enhancement
applies to string lengths between 1 and 128 bytes long. Support for
fast-short REP MOVSB is enumerated by the CPUID feature flag: CPUID
[EAX=7H, ECX=0H).EDX.FAST_SHORT_REP_MOVSB[bit 4] = 1. There is no change
in the REP STOS performance.

Add an X86_FEATURE_FSRM flag for this.

memmove() avoids REP MOVSB for short (< 32 byte) copies. Check FSRM and
use REP MOVSB for short copies on systems that support it.

[ bp: Massage and add comment. ]

Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191216214254.26492-1-tony.luck@intel.com

show more ...


# db4d30fb 04-Nov-2019 Vineela Tummalapalli <vineela.tummalapalli@intel.com>

x86/bugs: Add ITLB_MULTIHIT bug infrastructure

Some processors may incur a machine check error possibly resulting in an
unrecoverable CPU lockup when an instruction fetch encounters a TLB
multi-hit

x86/bugs: Add ITLB_MULTIHIT bug infrastructure

Some processors may incur a machine check error possibly resulting in an
unrecoverable CPU lockup when an instruction fetch encounters a TLB
multi-hit in the instruction TLB. This can occur when the page size is
changed along with either the physical address or cache type. The relevant
erratum can be found here:

https://bugzilla.kernel.org/show_bug.cgi?id=205195

There are other processors affected for which the erratum does not fully
disclose the impact.

This issue affects both bare-metal x86 page tables and EPT.

It can be mitigated by either eliminating the use of large pages or by
using careful TLB invalidations when changing the page size in the page
tables.

Just like Spectre, Meltdown, L1TF and MDS, a new bit has been allocated in
MSR_IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) and will be set on CPUs which
are mitigated against this issue.

Signed-off-by: Vineela Tummalapalli <vineela.tummalapalli@intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>

show more ...


# 1b42f017 23-Oct-2019 Pawan Gupta <pawan.kumar.gupta@linux.intel.com>

x86/speculation/taa: Add mitigation for TSX Async Abort

TSX Async Abort (TAA) is a side channel vulnerability to the internal
buffers in some Intel processors similar to Microachitectural Data
Sampl

x86/speculation/taa: Add mitigation for TSX Async Abort

TSX Async Abort (TAA) is a side channel vulnerability to the internal
buffers in some Intel processors similar to Microachitectural Data
Sampling (MDS). In this case, certain loads may speculatively pass
invalid data to dependent operations when an asynchronous abort
condition is pending in a TSX transaction.

This includes loads with no fault or assist condition. Such loads may
speculatively expose stale data from the uarch data structures as in
MDS. Scope of exposure is within the same-thread and cross-thread. This
issue affects all current processors that support TSX, but do not have
ARCH_CAP_TAA_NO (bit 8) set in MSR_IA32_ARCH_CAPABILITIES.

On CPUs which have their IA32_ARCH_CAPABILITIES MSR bit MDS_NO=0,
CPUID.MD_CLEAR=1 and the MDS mitigation is clearing the CPU buffers
using VERW or L1D_FLUSH, there is no additional mitigation needed for
TAA. On affected CPUs with MDS_NO=1 this issue can be mitigated by
disabling the Transactional Synchronization Extensions (TSX) feature.

A new MSR IA32_TSX_CTRL in future and current processors after a
microcode update can be used to control the TSX feature. There are two
bits in that MSR:

* TSX_CTRL_RTM_DISABLE disables the TSX sub-feature Restricted
Transactional Memory (RTM).

* TSX_CTRL_CPUID_CLEAR clears the RTM enumeration in CPUID. The other
TSX sub-feature, Hardware Lock Elision (HLE), is unconditionally
disabled with updated microcode but still enumerated as present by
CPUID(EAX=7).EBX{bit4}.

The second mitigation approach is similar to MDS which is clearing the
affected CPU buffers on return to user space and when entering a guest.
Relevant microcode update is required for the mitigation to work. More
details on this approach can be found here:

https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html

The TSX feature can be controlled by the "tsx" command line parameter.
If it is force-enabled then "Clear CPU buffers" (MDS mitigation) is
deployed. The effective mitigation state can be read from sysfs.

[ bp:
- massage + comments cleanup
- s/TAA_MITIGATION_TSX_DISABLE/TAA_MITIGATION_TSX_DISABLED/g - Josh.
- remove partial TAA mitigation in update_mds_branch_idle() - Josh.
- s/tsx_async_abort_cmdline/tsx_async_abort_parse_cmdline/g
]

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>

show more ...


# 9d40b85b 07-Oct-2019 Babu Moger <babu.moger@amd.com>

x86/cpufeatures: Add feature bit RDPRU on AMD

AMD Zen 2 introduces a new RDPRU instruction which is used to give
access to some processor registers that are typically only accessible
when the privil

x86/cpufeatures: Add feature bit RDPRU on AMD

AMD Zen 2 introduces a new RDPRU instruction which is used to give
access to some processor registers that are typically only accessible
when the privilege level is zero.

ECX is used as the implicit register to specify which register to read.
RDPRU places the specified register’s value into EDX:EAX.

For example, the RDPRU instruction can be used to read MPERF and APERF
at CPL > 0.

Add the feature bit so it is visible in /proc/cpuinfo.

Details are available in the AMD64 Architecture Programmer’s Manual:
https://www.amd.com/system/files/TechDocs/24594.pdf

Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: ak@linux.intel.com
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: robert.hu@linux.intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191007204839.5727.10803.stgit@localhost.localdomain

show more ...


# b4dd4f6e 28-Aug-2019 Thomas Hellstrom <thellstrom@vmware.com>

x86/vmware: Add a header file for hypercall definitions

The new header is intended to be used by drivers using the backdoor.
Follow the KVM example using alternatives self-patching to choose
between

x86/vmware: Add a header file for hypercall definitions

The new header is intended to be used by drivers using the backdoor.
Follow the KVM example using alternatives self-patching to choose
between vmcall, vmmcall and io instructions.

Also define two new CPU feature flags to indicate hypervisor support
for vmcall- and vmmcall instructions. The new XF86_FEATURE_VMW_VMMCALL
flag is needed because using XF86_FEATURE_VMMCALL might break QEMU/KVM
setups using the vmmouse driver. They rely on XF86_FEATURE_VMMCALL
on AMD to get the kvm_hypercall() right. But they do not yet implement
vmmcall for the VMware hypercall used by the vmmouse driver.

[ bp: reflow hypercall %edx usage explanation comment. ]

Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Doug Covelli <dcovelli@vmware.com>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-graphics-maintainer@vmware.com
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Nicolas Ferre <nicolas.ferre@microchip.com>
Cc: Robert Hoo <robert.hu@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: <pv-drivers@vmware.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190828080353.12658-3-thomas_os@shipmail.org

show more ...


# f36cf386 17-Jul-2019 Thomas Gleixner <tglx@linutronix.de>

x86/speculation/swapgs: Exclude ATOMs from speculation through SWAPGS

Intel provided the following information:

On all current Atom processors, instructions that use a segment register
value (e.g

x86/speculation/swapgs: Exclude ATOMs from speculation through SWAPGS

Intel provided the following information:

On all current Atom processors, instructions that use a segment register
value (e.g. a load or store) will not speculatively execute before the
last writer of that segment retires. Thus they will not use a
speculatively written segment value.

That means on ATOMs there is no speculation through SWAPGS, so the SWAPGS
entry paths can be excluded from the extra LFENCE if PTI is disabled.

Create a separate bug flag for the through SWAPGS speculation and mark all
out-of-order ATOMs and AMD/HYGON CPUs as not affected. The in-order ATOMs
are excluded from the whole mitigation mess anyway.

Reported-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>

show more ...


# be261ffc 04-Jul-2019 Josh Poimboeuf <jpoimboe@redhat.com>

x86: Remove X86_FEATURE_MFENCE_RDTSC

AMD and Intel both have serializing lfence (X86_FEATURE_LFENCE_RDTSC).
They've both had it for a long time, and AMD has had it enabled in Linux
since Spectre v1

x86: Remove X86_FEATURE_MFENCE_RDTSC

AMD and Intel both have serializing lfence (X86_FEATURE_LFENCE_RDTSC).
They've both had it for a long time, and AMD has had it enabled in Linux
since Spectre v1 was announced.

Back then, there was a proposal to remove the serializing mfence feature
bit (X86_FEATURE_MFENCE_RDTSC), since both AMD and Intel have
serializing lfence. At the time, it was (ahem) speculated that some
hypervisors might not yet support its removal, so it remained for the
time being.

Now a year-and-a-half later, it should be safe to remove.

I asked Andrew Cooper about whether it's still needed:

So if you're virtualised, you've got no choice in the matter.  lfence
is either dispatch-serialising or not on AMD, and you won't be able to
change it.

Furthermore, you can't accurately tell what state the bit is in, because
the MSR might not be virtualised at all, or may not reflect the true
state in hardware.  Worse still, attempting to set the bit may not be
successful even if there isn't a fault for doing so.

Xen sets the DE_CFG bit unconditionally, as does Linux by the looks of
things (see MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT).  ISTR other hypervisor
vendors saying the same, but I don't have any information to hand.

If you are running under a hypervisor which has been updated, then
lfence will almost certainly be dispatch-serialising in practice, and
you'll almost certainly see the bit already set in DE_CFG.  If you're
running under a hypervisor which hasn't been patched since Spectre,
you've already lost in many more ways.

I'd argue that X86_FEATURE_MFENCE_RDTSC is not worth keeping.

So remove it. This will reduce some code rot, and also make it easier
to hook barrier_nospec() up to a cmdline disable for performance
raisins, without having to need an alternative_3() macro.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/d990aa51e40063acb9888e8c1b688e41355a9588.1562255067.git.jpoimboe@redhat.com

show more ...


# 018ebca8 17-Jul-2019 Gayatri Kammela <gayatri.kammela@intel.com>

x86/cpufeatures: Enable a new AVX512 CPU feature

Add a new AVX512 instruction group/feature for enumeration in
/proc/cpuinfo: AVX512_VP2INTERSECT.

CPUID.(EAX=7,ECX=0):EDX[bit 8] AVX512_VP2INTERSEC

x86/cpufeatures: Enable a new AVX512 CPU feature

Add a new AVX512 instruction group/feature for enumeration in
/proc/cpuinfo: AVX512_VP2INTERSECT.

CPUID.(EAX=7,ECX=0):EDX[bit 8] AVX512_VP2INTERSECT

Detailed information of CPUID bits for this feature can be found in
the Intel Architecture Intsruction Set Extensions Programming Reference
document (refer to Table 1-2). A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=204215.

Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190717234632.32673-3-gayatri.kammela@intel.com

show more ...


# 18ec54fd 08-Jul-2019 Josh Poimboeuf <jpoimboe@redhat.com>

x86/speculation: Prepare entry code for Spectre v1 swapgs mitigations


Spectre v1 isn't only about array bounds checks. It can affect any
conditional checks. The kernel entry code interrupt, excep

x86/speculation: Prepare entry code for Spectre v1 swapgs mitigations


Spectre v1 isn't only about array bounds checks. It can affect any
conditional checks. The kernel entry code interrupt, exception, and NMI
handlers all have conditional swapgs checks. Those may be problematic in
the context of Spectre v1, as kernel code can speculatively run with a user
GS.

For example:

if (coming from user space)
swapgs
mov %gs:<percpu_offset>, %reg
mov (%reg), %reg1

When coming from user space, the CPU can speculatively skip the swapgs, and
then do a speculative percpu load using the user GS value. So the user can
speculatively force a read of any kernel value. If a gadget exists which
uses the percpu value as an address in another load/store, then the
contents of the kernel value may become visible via an L1 side channel
attack.

A similar attack exists when coming from kernel space. The CPU can
speculatively do the swapgs, causing the user GS to get used for the rest
of the speculative window.

The mitigation is similar to a traditional Spectre v1 mitigation, except:

a) index masking isn't possible; because the index (percpu offset)
isn't user-controlled; and

b) an lfence is needed in both the "from user" swapgs path and the
"from kernel" non-swapgs path (because of the two attacks described
above).

The user entry swapgs paths already have SWITCH_TO_KERNEL_CR3, which has a
CR3 write when PTI is enabled. Since CR3 writes are serializing, the
lfences can be skipped in those cases.

On the other hand, the kernel entry swapgs paths don't depend on PTI.

To avoid unnecessary lfences for the user entry case, create two separate
features for alternative patching:

X86_FEATURE_FENCE_SWAPGS_USER
X86_FEATURE_FENCE_SWAPGS_KERNEL

Use these features in entry code to patch in lfences where needed.

The features aren't enabled yet, so there's no functional change.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>

show more ...


# 6dbbf5ec 19-Jun-2019 Fenghua Yu <fenghua.yu@intel.com>

x86/cpufeatures: Enumerate user wait instructions

umonitor, umwait, and tpause are a set of user wait instructions.

umonitor arms address monitoring hardware using an address. The
address range is

x86/cpufeatures: Enumerate user wait instructions

umonitor, umwait, and tpause are a set of user wait instructions.

umonitor arms address monitoring hardware using an address. The
address range is determined by using CPUID.0x5. A store to
an address within the specified address range triggers the
monitoring hardware to wake up the processor waiting in umwait.

umwait instructs the processor to enter an implementation-dependent
optimized state while monitoring a range of addresses. The optimized
state may be either a light-weight power/performance optimized state
(C0.1 state) or an improved power/performance optimized state
(C0.2 state).

tpause instructs the processor to enter an implementation-dependent
optimized state C0.1 or C0.2 state and wake up when time-stamp counter
reaches specified timeout.

The three instructions may be executed at any privilege level.

The instructions provide power saving method while waiting in
user space. Additionally, they can allow a sibling hyperthread to
make faster progress while this thread is waiting. One example of an
application usage of umwait is when waiting for input data from another
application, such as a user level multi-threaded packet processing
engine.

Availability of the user wait instructions is indicated by the presence
of the CPUID feature flag WAITPKG CPUID.0x07.0x0:ECX[5].

Detailed information on the instructions and CPUID feature WAITPKG flag
can be found in the latest Intel Architecture Instruction Set Extensions
and Future Features Programming Reference and Intel 64 and IA-32
Architectures Software Developer's Manual.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: "Borislav Petkov" <bp@alien8.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1560994438-235698-2-git-send-email-fenghua.yu@intel.com

show more ...


# b302e4b1 17-Jun-2019 Fenghua Yu <fenghua.yu@intel.com>

x86/cpufeatures: Enumerate the new AVX512 BFLOAT16 instructions

AVX512 BFLOAT16 instructions support 16-bit BFLOAT16 floating-point
format (BF16) for deep learning optimization.

BF16 is a short ver

x86/cpufeatures: Enumerate the new AVX512 BFLOAT16 instructions

AVX512 BFLOAT16 instructions support 16-bit BFLOAT16 floating-point
format (BF16) for deep learning optimization.

BF16 is a short version of 32-bit single-precision floating-point
format (FP32) and has several advantages over 16-bit half-precision
floating-point format (FP16). BF16 keeps FP32 accumulation after
multiplication without loss of precision, offers more than enough
range for deep learning training tasks, and doesn't need to handle
hardware exception.

AVX512 BFLOAT16 instructions are enumerated in CPUID.7.1:EAX[bit 5]
AVX512_BF16.

CPUID.7.1:EAX contains only feature bits. Reuse the currently empty
word 12 as a pure features word to hold the feature bits including
AVX512_BF16.

Detailed information of the CPUID bit and AVX512 BFLOAT16 instructions
can be found in the latest Intel Architecture Instruction Set Extensions
and Future Features Programming Reference.

[ bp: Check CPUID(7) subleaf validity before accessing subleaf 1. ]

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: Robert Hoo <robert.hu@linux.intel.com>
Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86 <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560794416-217638-3-git-send-email-fenghua.yu@intel.com

show more ...


# acec0ce0 19-Jun-2019 Fenghua Yu <fenghua.yu@intel.com>

x86/cpufeatures: Combine word 11 and 12 into a new scattered features word

It's a waste for the four X86_FEATURE_CQM_* feature bits to occupy two
whole feature bits words. To better utilize feature

x86/cpufeatures: Combine word 11 and 12 into a new scattered features word

It's a waste for the four X86_FEATURE_CQM_* feature bits to occupy two
whole feature bits words. To better utilize feature words, re-define
word 11 to host scattered features and move the four X86_FEATURE_CQM_*
features into Linux defined word 11. More scattered features can be
added in word 11 in the future.

Rename leaf 11 in cpuid_leafs to CPUID_LNX_4 to reflect it's a
Linux-defined leaf.

Rename leaf 12 as CPUID_DUMMY which will be replaced by a meaningful
name in the next patch when CPUID.7.1:EAX occupies world 12.

Maximum number of RMID and cache occupancy scale are retrieved from
CPUID.0xf.1 after scattered CQM features are enumerated. Carve out the
code into a separate function.

KVM doesn't support resctrl now. So it's safe to move the
X86_FEATURE_CQM_* features to scattered features word 11 for KVM.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Babu Moger <babu.moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86 <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560794416-217638-2-git-send-email-fenghua.yu@intel.com

show more ...


# cbb99c0f 05-Jun-2019 Aaron Lewis <aaronlewis@google.com>

x86/cpufeatures: Add FDP_EXCPTN_ONLY and ZERO_FCS_FDS

Add the CPUID enumeration for Intel's de-feature bits to accommodate
passing these de-features through to kvm guests.

These de-features are (fr

x86/cpufeatures: Add FDP_EXCPTN_ONLY and ZERO_FCS_FDS

Add the CPUID enumeration for Intel's de-feature bits to accommodate
passing these de-features through to kvm guests.

These de-features are (from SDM vol 1, section 8.1.8):
- X86_FEATURE_FDP_EXCPTN_ONLY: If CPUID.(EAX=07H,ECX=0H):EBX[bit 6] = 1, the
data pointer (FDP) is updated only for the x87 non-control instructions that
incur unmasked x87 exceptions.
- X86_FEATURE_ZERO_FCS_FDS: If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the
processor deprecates FCS and FDS; it saves each as 0000H.

Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: marcorr@google.com
Cc: Peter Feiner <pfeiner@google.com>
Cc: pshier@google.com
Cc: Robert Hoo <robert.hu@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190605220252.103406-1-aaronlewis@google.com

show more ...


# e261f209 01-Mar-2019 Thomas Gleixner <tglx@linutronix.de>

x86/speculation/mds: Add BUG_MSBDS_ONLY

This bug bit is set on CPUs which are only affected by Microarchitectural
Store Buffer Data Sampling (MSBDS) and not by any other MDS variant.

This is import

x86/speculation/mds: Add BUG_MSBDS_ONLY

This bug bit is set on CPUs which are only affected by Microarchitectural
Store Buffer Data Sampling (MSBDS) and not by any other MDS variant.

This is important because the Store Buffers are partitioned between
Hyper-Threads so cross thread forwarding is not possible. But if a thread
enters or exits a sleep state the store buffer is repartitioned which can
expose data from one thread to the other. This transition can be mitigated.

That means that for CPUs which are only affected by MSBDS SMT can be
enabled, if the CPU is not affected by other SMT sensitive vulnerabilities,
e.g. L1TF. The XEON PHI variants fall into that category. Also the
Silvermont/Airmont ATOMs, but for them it's not really relevant as they do
not support SMT, but mark them for completeness sake.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>

show more ...


# ed5194c2 18-Jan-2019 Andi Kleen <ak@linux.intel.com>

x86/speculation/mds: Add basic bug infrastructure for MDS

Microarchitectural Data Sampling (MDS), is a class of side channel attacks
on internal buffers in Intel CPUs. The variants are:

- Microarc

x86/speculation/mds: Add basic bug infrastructure for MDS

Microarchitectural Data Sampling (MDS), is a class of side channel attacks
on internal buffers in Intel CPUs. The variants are:

- Microarchitectural Store Buffer Data Sampling (MSBDS) (CVE-2018-12126)
- Microarchitectural Fill Buffer Data Sampling (MFBDS) (CVE-2018-12130)
- Microarchitectural Load Port Data Sampling (MLPDS) (CVE-2018-12127)

MSBDS leaks Store Buffer Entries which can be speculatively forwarded to a
dependent load (store-to-load forwarding) as an optimization. The forward
can also happen to a faulting or assisting load operation for a different
memory address, which can be exploited under certain conditions. Store
buffers are partitioned between Hyper-Threads so cross thread forwarding is
not possible. But if a thread enters or exits a sleep state the store
buffer is repartitioned which can expose data from one thread to the other.

MFBDS leaks Fill Buffer Entries. Fill buffers are used internally to manage
L1 miss situations and to hold data which is returned or sent in response
to a memory or I/O operation. Fill buffers can forward data to a load
operation and also write data to the cache. When the fill buffer is
deallocated it can retain the stale data of the preceding operations which
can then be forwarded to a faulting or assisting load operation, which can
be exploited under certain conditions. Fill buffers are shared between
Hyper-Threads so cross thread leakage is possible.

MLDPS leaks Load Port Data. Load ports are used to perform load operations
from memory or I/O. The received data is then forwarded to the register
file or a subsequent operation. In some implementations the Load Port can
contain stale data from a previous operation which can be forwarded to
faulting or assisting loads under certain conditions, which again can be
exploited eventually. Load ports are shared between Hyper-Threads so cross
thread leakage is possible.

All variants have the same mitigation for single CPU thread case (SMT off),
so the kernel can treat them as one MDS issue.

Add the basic infrastructure to detect if the current CPU is affected by
MDS.

[ tglx: Rewrote changelog ]

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>

show more ...


# 52f64909 05-Mar-2019 Peter Zijlstra (Intel) <peterz@infradead.org>

x86: Add TSX Force Abort CPUID/MSR

Skylake systems will receive a microcode update to address a TSX
errata. This microcode will (by default) clobber PMC3 when TSX
instructions are (speculatively or

x86: Add TSX Force Abort CPUID/MSR

Skylake systems will receive a microcode update to address a TSX
errata. This microcode will (by default) clobber PMC3 when TSX
instructions are (speculatively or not) executed.

It also provides an MSR to cause all TSX transaction to abort and
preserve PMC3.

Add the CPUID enumeration and MSR definition.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>

show more ...


# a0aea130 19-Dec-2018 Robert Hoo <robert.hu@linux.intel.com>

KVM: x86: Add CPUID support for new instruction WBNOINVD

Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>


# 20c3a2c3 13-Dec-2018 Thomas Lendacky <Thomas.Lendacky@amd.com>

x86/speculation: Add support for STIBP always-on preferred mode

Different AMD processors may have different implementations of STIBP.
When STIBP is conditionally enabled, some implementations would

x86/speculation: Add support for STIBP always-on preferred mode

Different AMD processors may have different implementations of STIBP.
When STIBP is conditionally enabled, some implementations would benefit
from having STIBP always on instead of toggling the STIBP bit through MSR
writes. This preference is advertised through a CPUID feature bit.

When conditional STIBP support is requested at boot and the CPU advertises
STIBP always-on mode as preferred, switch to STIBP "on" support. To show
that this transition has occurred, create a new spectre_v2_user_mitigation
value and a new spectre_v2_user_strings message. The new mitigation value
is used in spectre_v2_user_select_mitigation() to print the new mitigation
message as well as to return a new string from stibp_state().

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20181213230352.6937.74943.stgit@tlendack-t1.amdoffice.net

show more ...


# ace6485a 24-Oct-2018 Fenghua Yu <fenghua.yu@intel.com>

x86/cpufeatures: Enumerate MOVDIR64B instruction

MOVDIR64B moves 64-bytes as direct-store with 64-bytes write atomicity.
Direct store is implemented by using write combining (WC) for writing
data di

x86/cpufeatures: Enumerate MOVDIR64B instruction

MOVDIR64B moves 64-bytes as direct-store with 64-bytes write atomicity.
Direct store is implemented by using write combining (WC) for writing
data directly into memory without caching the data.

In low latency offload (e.g. Non-Volatile Memory, etc), MOVDIR64B writes
work descriptors (and data in some cases) to device-hosted work-queues
atomically without cache pollution.

Availability of the MOVDIR64B instruction is indicated by the
presence of the CPUID feature flag MOVDIR64B (CPUID.0x07.0x0:ECX[bit 28]).

Please check the latest Intel Architecture Instruction Set Extensions
and Future Features Programming Reference for more details on the CPUID
feature MOVDIR64B flag.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1540418237-125817-3-git-send-email-fenghua.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>

show more ...


# 33823f4d 24-Oct-2018 Fenghua Yu <fenghua.yu@intel.com>

x86/cpufeatures: Enumerate MOVDIRI instruction

MOVDIRI moves doubleword or quadword from register to memory through
direct store which is implemented by using write combining (WC) for
writing data d

x86/cpufeatures: Enumerate MOVDIRI instruction

MOVDIRI moves doubleword or quadword from register to memory through
direct store which is implemented by using write combining (WC) for
writing data directly into memory without caching the data.

Programmable agents can handle streaming offload (e.g. high speed packet
processing in network). Hardware implements a doorbell (tail pointer)
register that is updated by software when adding new work-elements to
the streaming offload work-queue.

MOVDIRI can be used as the doorbell write which is a 4-byte or 8-byte
uncachable write to MMIO. MOVDIRI has lower overhead than other ways
to write the doorbell.

Availability of the MOVDIRI instruction is indicated by the presence of
the CPUID feature flag MOVDIRI(CPUID.0x07.0x0:ECX[bit 27]).

Please check the latest Intel Architecture Instruction Set Extensions
and Future Features Programming Reference for more details on the CPUID
feature MOVDIRI flag.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1540418237-125817-2-git-send-email-fenghua.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>

show more ...


# 706d5168 01-Aug-2018 Sai Praneeth <sai.praneeth.prakhya@intel.com>

x86/speculation: Support Enhanced IBRS on future CPUs

Future Intel processors will support "Enhanced IBRS" which is an "always
on" mode i.e. IBRS bit in SPEC_CTRL MSR is enabled once and never
disab

x86/speculation: Support Enhanced IBRS on future CPUs

Future Intel processors will support "Enhanced IBRS" which is an "always
on" mode i.e. IBRS bit in SPEC_CTRL MSR is enabled once and never
disabled.

From the specification [1]:

"With enhanced IBRS, the predicted targets of indirect branches
executed cannot be controlled by software that was executed in a less
privileged predictor mode or on another logical processor. As a
result, software operating on a processor with enhanced IBRS need not
use WRMSR to set IA32_SPEC_CTRL.IBRS after every transition to a more
privileged predictor mode. Software can isolate predictor modes
effectively simply by setting the bit once. Software need not disable
enhanced IBRS prior to entering a sleep state such as MWAIT or HLT."

If Enhanced IBRS is supported by the processor then use it as the
preferred spectre v2 mitigation mechanism instead of Retpoline. Intel's
Retpoline white paper [2] states:

"Retpoline is known to be an effective branch target injection (Spectre
variant 2) mitigation on Intel processors belonging to family 6
(enumerated by the CPUID instruction) that do not have support for
enhanced IBRS. On processors that support enhanced IBRS, it should be
used for mitigation instead of retpoline."

The reason why Enhanced IBRS is the recommended mitigation on processors
which support it is that these processors also support CET which
provides a defense against ROP attacks. Retpoline is very similar to ROP
techniques and might trigger false positives in the CET defense.

If Enhanced IBRS is selected as the mitigation technique for spectre v2,
the IBRS bit in SPEC_CTRL MSR is set once at boot time and never
cleared. Kernel also has to make sure that IBRS bit remains set after
VMEXIT because the guest might have cleared the bit. This is already
covered by the existing x86_spec_ctrl_set_guest() and
x86_spec_ctrl_restore_host() speculation control functions.

Enhanced IBRS still requires IBPB for full mitigation.

[1] Speculative-Execution-Side-Channel-Mitigations.pdf
[2] Retpoline-A-Branch-Target-Injection-Mitigation.pdf
Both documents are available at:
https://bugzilla.kernel.org/show_bug.cgi?id=199511

Originally-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim C Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1533148945-24095-1-git-send-email-sai.praneeth.prakhya@intel.com

show more ...


123456789